Sunday, May 22, 2011

Statistical Mechanics(2nd edition)-Huang Ebook download

Statistical Mechanics(2nd edition)-Huang

 Textbook information
  • Text book title            : Statistical Mechanics(2nd edition)
  • Author                         : Kerson Huang
  • ISBN                           : 1420079026
File information
  • File size                     : 3.60 Mb
  • File format                : DjVu File
  • Total No. of pages    : 506 pages 







Share


 Text book Content page

PART A THERMODYNAMICS AND KINETIC THEORY

CHAPTER I THE LAWS OF THERMODYNAMICS 3
  • 1.1 Preliminaries 3
  • 1.2 The First Law of Thermodynamics 7
  • 1.3 The Second Law of Thermodynamics 9
  • 1.4 Entropy 14
  • 1.5 Some Immediate Consequences of the Second Law 19
  • 1.6 Thermodynamic Potentials 22
  • 1.7 The Third Law of Thermodynamics 25
CHAPTER 2 SOME APPLICATIONS OF THERMODYNAMICS
  • 2.1 Thermodynamic Description of Phase Transitions 31
  • 2.2 Surface Effects in Condensation 35
  • 2.3 Van der Waals Equation of State 38
  • 2.4 Osmotic Pressure 43
  • 2.5 The Limit of Thermodynamics 48
CHAPTER 3 THE PROBLEM OF KINETIC THEORY
  • 3.1 Formulation of the Problem 52
  • 3.2 Binary Collisions 56
  • 3.3 The Boltzmann Transpod Equation 60
  • 3.4 The Gibbsian Ensemble 62
  • 3.5 The BBGKY Hierarchy 65
CHAPTER 4 THE EQUILIBRIUM STATE OF A DILUTE GAS
  • 4.1 Boltzmann's HTheorem 73
  • 4.2 The Maxwell-Boltzmann Distribution 75
  • 4.3 The Method of the Most Probable Distribution 79
  • 4.4 Analysis of the HTheorem 85
  • 4.5 The Poincarb Cycle 90
CHAPTER 5 TRANSPQRT PHENOMENA
  • 5.1 The Mean Free Path 93
  • 5.2 Effusion 95
  • 5.3 The Conservation Laws 96
  • 5.4 The Zero-Order Approximation 100
  • 5.5 The First-Order Approximation 104
  • 5.6 Viscosity 108
  • 5.7 Viscous Hydrodynamics 111
  • 5,8 The Navier-Stokes Equation 113
  • 5.9 Examples in Hydrodynamics 117
PART B STATISTICAL MECHANICS .12s 

CHAPTER 6 CLASSICAL STATISTICAL MECHANICS
  • 6.1 The Postulate of Classical Statistical Mechanics 127
  • 6.2 Microcanonical Ensemble 130
  • 6.3 Derivation of Thermodynamics 135
  • 6.4 Equipartition Theorem 136
  • 6.5 Classical Ideal Gas 138
  • 6.6 Gibbs Paradox 140
CHAPTER 7 CANONICAL ENSEMBLE AND
GRAND CANONICAL ENSEMBLE 143
  • 7.1 Canonical Ensemble 143
  • 7.2 Energy Fluctuations in the Canonical Ensemble 145
  • 7.3 Grand Canonical Ensemble 149
  • 7.4 Density Fluctuations in the Grand Canonical Ensemble
  • 7.5 The Chemical Potential 154
  • 7.6 Equivalence of the Canonical Ensemble and the Grand
  • Canonical Ensemble 157
  • 7.7 Behavior of W(N) 161
  • 7.8 The Meaning of the Maxwell Construction 163
CHAPTER 8
  • 8.1 The Postulates of Quantum Statistical Mechanics
  • 8.2 Density Matrix 174
  • 8.3 Ensembles in Quantum Statistical, Mechanics 176
  • 8.4 The Third Law of Thermodynamics 178
  • 8.5 The Ideal Gases: Microcanonical Ensemble 179
  • 8.6 The Ideal Gases: Grand Canonical Ensemble 185
  • 8.7 Foundations of Statistical Mechanics 189

QUANTUM STATISTICAL MECHANICS

CHAPTER 9 GENERAL PROPERTIES OF THE PARTITION FUNCTION
  • 9.1 The Darwin-Fowler Method 193
  • 9.2 Classical Limit of the Partition Function 199
  • 9.3 Singularities and Phase Transitions 206
  • 9.4 The Lee-Yang Circle Theorem 210
CHAPTER 10 APPROXIMATE METHODS 213
  • lO. 1 Classical Cluster Expansion 213
  • lO,2 Quantum Cluster Expansion 220
  • lO,3 The Second Virial Coefficient 224
  • 10,4 Variational Principles 228
  • lO.S Imperfect Gases at Low Temperatures 230
CHAPTER 1 1 FERMI SYSTEMS 241
  • 11.1 The Equation of State of an Ideal Fermi Gas 241
  • 1 1,2 The Theory of White Dwarf Stars 24?
  • 1 1,3 Landau Diamagnetism 253
  • 1 1.4 The De Haas-Van Alphen Effect 260
  • 1 1.5 The Quantized Hall Effect 261
  • 11,6 Pauli Paramagnetism 26?
  • 1 1,7 Magnetic Properties of an Imperfect Gas 2?2
CHAPTER 12 BOSE SYSTEMS 2?8
  • 12.1 Photons 2?8
  • 12.2 Phono. ns in Solids 283
  • 12.3 Bose-Einstein Condensation 286
  • 12.4 An Imperfect Bose Gas 294
  • 12.5 The Superfluid Order Parameter 298
PART C SPECIAL TOPICS IN STATISTICAL MECHANICS 

CHAPTER 13 SUPERFLUIDS 307
  • 13,1 Liquid Helium 307
  • 13.2 Tisza's Two-Fluid Model 311
  • 13.3 The Bose-Einstein Condensate 313
  • 13.4 Landau's Theory 315
  • 13.5 Superfluid Velocity 317
  • 13.6 Superfluid Flow 321
  • 13.7 The Phonon Wave Function 325
  • 13.8 Dilute Bose Gas 329
CHAPTER 14 THE ISING MODEL 341
  • 14.1 Definition of the Ising Model 341
  • 14.2 Equivalence of the Ising Model to Other Models
  • 14,3 Spontaneous Magnetization 348
  • 14,4 The Bragg-Williams Approximation 352
  • 14,5 The Bethe-Peierls Approximation 35?
  • 14,6 The One-Dimensional Ising Model 361
CHAPTER 15 THE ONSAGER SOLUTION 368
  • 15.1 Formulation of the Two-Dimensional Ising Model
  • 15.2 Mathematical Digression 374
  • 15.3 The Solution 378
CHAPTER 16 CRITICAL PHENOMENA 392
  • 16.1 The Order Parameter 392
  • 16.2 The Correlation Function and the Fluctuation-Dissipation Theorem
  • 16.3 Critical Exponents 396
  • 16.4 The Scaling Hypothesis 399
  • 16.5 Scale Invariance 403
  • 16.6 Goldstone Excitations 406
  • 16.7 The Impodance of Dimensionality 407
CHAPTER 17 THE LANDAU APPROACH
  • 17.1 The Landau Free Energy 416
  • 7.2 Mathematical Digression 418
  • 7.3 Derivation in Simple Models 420
  • 7.4 Mean-Field Theory 422
  • 7.6 The Van der Waals Equation of State
  • 7.6 The Tricritical Point 428
  • 7.7 The Gaussian Model 434
  • 7.8 The Ginzburg Criterion 437
  • 7.9 Anomalous Dimensions 438
CHAPTER 18 RENORMALIZATION GROUP 441
  • 18.1 Block Spins 441
  • 18.2 The One-Dimensional Ising Model 443
  • 18.3 Renormalization-Group Transformation 446
  • 18.4 Fixed Points and Scaling Fields 449
  • 18.5 Momentum-Space Formulation 452
  • 18.6 The Gaussian Model 455
  • 18.7 The Landau-Wilson Model 458
APPENDIX N-BODY SYSTEM OF IDENTICAL PARTICLES
  • A.1 The Two Kinds of Statistics 468
  • A.2 N-Body Wave Functions 470
  • A.3 Method of Quantized Fields 477
  • A.4 Longitudinal Sum Rules 484
INDEX 487