Statistical Mechanics(2nd edition)-Huang
Textbook information
- Text book title : Statistical Mechanics(2nd edition)
- Author : Kerson Huang
- ISBN : 1420079026
File information
- File size : 3.60 Mb
- File format : DjVu File
- Total No. of pages : 506 pages
Text book Content page
PART A THERMODYNAMICS AND KINETIC THEORY
- 1.1 Preliminaries 3
- 1.2 The First Law of Thermodynamics 7
- 1.3 The Second Law of Thermodynamics 9
- 1.4 Entropy 14
- 1.5 Some Immediate Consequences of the Second Law 19
- 1.6 Thermodynamic Potentials 22
- 1.7 The Third Law of Thermodynamics 25
CHAPTER 2 SOME APPLICATIONS OF THERMODYNAMICS
- 2.1 Thermodynamic Description of Phase Transitions 31
- 2.2 Surface Effects in Condensation 35
- 2.3 Van der Waals Equation of State 38
- 2.4 Osmotic Pressure 43
- 2.5 The Limit of Thermodynamics 48
CHAPTER 3 THE PROBLEM OF KINETIC THEORY
- 3.1 Formulation of the Problem 52
- 3.2 Binary Collisions 56
- 3.3 The Boltzmann Transpod Equation 60
- 3.4 The Gibbsian Ensemble 62
- 3.5 The BBGKY Hierarchy 65
CHAPTER 4 THE EQUILIBRIUM STATE OF A DILUTE GAS
- 4.1 Boltzmann's HTheorem 73
- 4.2 The Maxwell-Boltzmann Distribution 75
- 4.3 The Method of the Most Probable Distribution 79
- 4.4 Analysis of the HTheorem 85
- 4.5 The Poincarb Cycle 90
CHAPTER 5 TRANSPQRT PHENOMENA
- 5.1 The Mean Free Path 93
- 5.2 Effusion 95
- 5.3 The Conservation Laws 96
- 5.4 The Zero-Order Approximation 100
- 5.5 The First-Order Approximation 104
- 5.6 Viscosity 108
- 5.7 Viscous Hydrodynamics 111
- 5,8 The Navier-Stokes Equation 113
- 5.9 Examples in Hydrodynamics 117
PART B STATISTICAL MECHANICS .12s
CHAPTER 6 CLASSICAL STATISTICAL MECHANICS
- 6.1 The Postulate of Classical Statistical Mechanics 127
- 6.2 Microcanonical Ensemble 130
- 6.3 Derivation of Thermodynamics 135
- 6.4 Equipartition Theorem 136
- 6.5 Classical Ideal Gas 138
- 6.6 Gibbs Paradox 140
CHAPTER 7 CANONICAL ENSEMBLE AND
GRAND CANONICAL ENSEMBLE 143
GRAND CANONICAL ENSEMBLE 143
- 7.1 Canonical Ensemble 143
- 7.2 Energy Fluctuations in the Canonical Ensemble 145
- 7.3 Grand Canonical Ensemble 149
- 7.4 Density Fluctuations in the Grand Canonical Ensemble
- 7.5 The Chemical Potential 154
- 7.6 Equivalence of the Canonical Ensemble and the Grand
- Canonical Ensemble 157
- 7.7 Behavior of W(N) 161
- 7.8 The Meaning of the Maxwell Construction 163
CHAPTER 8
- 8.1 The Postulates of Quantum Statistical Mechanics
- 8.2 Density Matrix 174
- 8.3 Ensembles in Quantum Statistical, Mechanics 176
- 8.4 The Third Law of Thermodynamics 178
- 8.5 The Ideal Gases: Microcanonical Ensemble 179
- 8.6 The Ideal Gases: Grand Canonical Ensemble 185
- 8.7 Foundations of Statistical Mechanics 189
CHAPTER 9 GENERAL PROPERTIES OF THE PARTITION FUNCTION
- 9.1 The Darwin-Fowler Method 193
- 9.2 Classical Limit of the Partition Function 199
- 9.3 Singularities and Phase Transitions 206
- 9.4 The Lee-Yang Circle Theorem 210
CHAPTER 10 APPROXIMATE METHODS 213
- lO. 1 Classical Cluster Expansion 213
- lO,2 Quantum Cluster Expansion 220
- lO,3 The Second Virial Coefficient 224
- 10,4 Variational Principles 228
- lO.S Imperfect Gases at Low Temperatures 230
CHAPTER 1 1 FERMI SYSTEMS 241
- 11.1 The Equation of State of an Ideal Fermi Gas 241
- 1 1,2 The Theory of White Dwarf Stars 24?
- 1 1,3 Landau Diamagnetism 253
- 1 1.4 The De Haas-Van Alphen Effect 260
- 1 1.5 The Quantized Hall Effect 261
- 11,6 Pauli Paramagnetism 26?
- 1 1,7 Magnetic Properties of an Imperfect Gas 2?2
CHAPTER 12 BOSE SYSTEMS 2?8
- 12.1 Photons 2?8
- 12.2 Phono. ns in Solids 283
- 12.3 Bose-Einstein Condensation 286
- 12.4 An Imperfect Bose Gas 294
- 12.5 The Superfluid Order Parameter 298
PART C SPECIAL TOPICS IN STATISTICAL MECHANICS
CHAPTER 13 SUPERFLUIDS 307
- 13,1 Liquid Helium 307
- 13.2 Tisza's Two-Fluid Model 311
- 13.3 The Bose-Einstein Condensate 313
- 13.4 Landau's Theory 315
- 13.5 Superfluid Velocity 317
- 13.6 Superfluid Flow 321
- 13.7 The Phonon Wave Function 325
- 13.8 Dilute Bose Gas 329
CHAPTER 14 THE ISING MODEL 341
- 14.1 Definition of the Ising Model 341
- 14.2 Equivalence of the Ising Model to Other Models
- 14,3 Spontaneous Magnetization 348
- 14,4 The Bragg-Williams Approximation 352
- 14,5 The Bethe-Peierls Approximation 35?
- 14,6 The One-Dimensional Ising Model 361
CHAPTER 15 THE ONSAGER SOLUTION 368
- 15.1 Formulation of the Two-Dimensional Ising Model
- 15.2 Mathematical Digression 374
- 15.3 The Solution 378
CHAPTER 16 CRITICAL PHENOMENA 392
- 16.1 The Order Parameter 392
- 16.2 The Correlation Function and the Fluctuation-Dissipation Theorem
- 16.3 Critical Exponents 396
- 16.4 The Scaling Hypothesis 399
- 16.5 Scale Invariance 403
- 16.6 Goldstone Excitations 406
- 16.7 The Impodance of Dimensionality 407
CHAPTER 17 THE LANDAU APPROACH
- 17.1 The Landau Free Energy 416
- 7.2 Mathematical Digression 418
- 7.3 Derivation in Simple Models 420
- 7.4 Mean-Field Theory 422
- 7.6 The Van der Waals Equation of State
- 7.6 The Tricritical Point 428
- 7.7 The Gaussian Model 434
- 7.8 The Ginzburg Criterion 437
- 7.9 Anomalous Dimensions 438
CHAPTER 18 RENORMALIZATION GROUP 441
- 18.1 Block Spins 441
- 18.2 The One-Dimensional Ising Model 443
- 18.3 Renormalization-Group Transformation 446
- 18.4 Fixed Points and Scaling Fields 449
- 18.5 Momentum-Space Formulation 452
- 18.6 The Gaussian Model 455
- 18.7 The Landau-Wilson Model 458
APPENDIX N-BODY SYSTEM OF IDENTICAL PARTICLES
- A.1 The Two Kinds of Statistics 468
- A.2 N-Body Wave Functions 470
- A.3 Method of Quantized Fields 477
- A.4 Longitudinal Sum Rules 484
INDEX 487