Sunday, May 22, 2011

Classical Mechanics - 3rd ed. - Goldstein, Poole & Safko Ebook download

Classical Mechanics - 3rd ed. - Goldstein, Poole & Safko

 Textbook information
  • Text book title            : Classical Mechanics(3rd ed.)
  • Author                         : Goldstein, Poole & Safko
  • ISBN                           : 0201657023
File information
  • File size                     :8.95 Mb
  • File format                : DjVu File
  • Total No. of pages    : 636 pages








Share




 Text book Content page titles 

Survey of the Elementary Principles 1
  • 1.1 Mechanics of a Particle 1
  • 1.2 Mechanics of a System of Particles 5
  • 1.3 Constraints 12
  • 1.4 D' Alembert's Principle and Lagrange's Equations 16
  • 1.5 Velocity-Dependent Potentials and the Dissipation Function 22
  • 1.6 Simple Applications of the Lagrangian Formulation 24
Variational Principles and Lagrange's Equations 34
  • 2.1 Hamilton's Principle 34
  • 2.2 Some Techniques of the Calculus of Variations 36
  • 2.3 Derivation of Lagrange's Equations from Hamilton's Principle 44
  • 2.4 Extension of Hamilton's Principle to Nonholonomic Systems 45
  • 2.5 Advantages of a Variational Principle Formulation 51
  • 2.6 Conservation Theorems and Symmetry Properties 54
  • 2.7 Energy Function and the Conservation of Energy 60
The Central Force Problem 70
  • 3.1 Reduction to the Equivalent One-Body Problem 70
  • 3.2 The Equations of Motion and First Integrals 72
  • 3.3 The Equivalent One-Dimensional Problem, and
  • Classification of Orbits 76
  • 3.4 The Virial Theorem 83
  • 3.5 The Differential Equation for the Orbit, and Integrable
  • Power-Law Potentials 86
  • 3.6 Conditions for Closed Orbits (Bertrand's Theorem) 89
  • 3.7 The Kepler Problem: Inverse-Square Law of Force 92
  • 3.8 The Motion in Time in the Kepler Problem 98
  • 3.9 The Laplace-Runge-Lenz Vector 102
  • 3.10 Scattering in a Central Force Field 106
  • 3.11 Transformation of the Scattering Problem to Laboratory
  • Coordinates 114
  • 3.12 The Three-Body Problem 121
4  The Kinematics of Rigid Body Motion 134
  • 4.1 The Independent Coordinates of a Rigid Body 134
  • 4.2 Orthogonal Transformations 139
  • 4.3 Formal Properties of the Transformation Matrix 144
  • 4.4 The Euler Angles 150
  • 4.5 The Cayley-Klein Parameters and Related Quantities 154
  • 4.6 Euler's Theorem on the Motion of a Rigid Body 155
  • 4.7 Finite Rotations 161
  • 4.8 Infinitesimal Rotations 163
  • 4.9 Rate of Change of a Vector 171
  • 4.10 The Coriolis Effect 174
5  The Rigid Body Equations of Motion 184
  • 5.1 Angular Momentum and Kinetic Energy of Motion
  • about a Point 184
  • 5.2 Tensors 188
  • 5.3 The Inertia Tensor and the Moment of Inertia 191
  • 5.4 The Eigenvalues of the Inertia Tensor and the Principal
  • Axis Transformation 195
  • 5.5 Solving Rigid Body Problems and the Euler Equations of
  • Motion 198
  • 5.6 Torque-free Motion of a Rigid Body 200
  • 5.7 The Heavy Symmetrical Top with One Point Fixed 208
  • 5.8 Precession of the Equinoxes and of Satellite Orbits 223
  • 5.9 Precession of Systems of Charges in a Magnetic Field 230
6  Oscillations 238
  • 6.1 Formulation of the Problem 238
  • 6.2 The Eigenvalue Equation and the Principal Axis Transformation 241
  • 6.3 Frequencies of Free Vibration, and Normal Coordinates 250
  • 6.4 Free Vibrations of a Linear Triatomic Molecule 253
  • 6.5 Forced Vibrations and the Effect of Dissipative Forces 259
  • 6.6 Beyond Small Oscillations: The Damped Driven Pendulum and the
  • Josephson Junction 265
7  The Classical Mechanics of the Special Theory of Relativity 276
  • 7.1 Basic Postulates of the Special Theory 277
  • 7.2 Lorentz Transformations 280
  • 7.3 Velocity Addition and Thomas Precession 282
  • 7.4 Vectors and the Metric Tensor 286
  • 7.5 1-Forms and Tensors 289
  • 7.6 Forces in the Special Theory; Electromagnetism 297
  • 7.7 Relativistic Kinematics of Collisions and Many-Particle i
  • Systems 300 !
  • 7.8 Relativistic Angular Momentum 309
  • 7.9 The Lagrangian Formulation of Relativistic Mechanics 312
  • 7.10 Co variant Lagrangian Formulations 318
  • 7.11 Introduction to the General Theory of Relativity 324
8  The Hamilton Equations of Motion 334
  • 8.1 Legendre Transformations and the Hamilton Equations
  • of Motion 334
  • 8.2 Cyclic Coordinates and Conservation Theorems 343
  • 8.3 Routh's Procedure 347
  • 8.4 The Hamiltonian Formulation of Relativistic Mechanics 349
  • 8.5 Derivation of Hamilton's Equations from a
  • Variational Principle 353
  • 8.6 The Principle of Least Action 356
9  Canonical Transformations 368
  • 9.1 The Equations of Canonical Transformation 368
  • 9.2 Examples of Canonical Transformations 375
  • 9.3 The Harmonic Oscillator 377
  • 9.4 The Symplcctic Approach to Canonical Transformations 381
  • 9.5 Poisson Brackets and Other Canonical Invariants 388 '
  • 9.6 Equations of Motion, Infinitesimal Canonical Transformations, and
  • Conservation Theorems in the Poisson Bracket Formulation 396
  • 9.7 The Angular Momentum Poisson Bracket Relations 408
  • 9.8 Symmetry Groups of Mechanical Systems 412
  • 9.9 Liouville's Theorem 419
10  Hamilton-Jacobi Theory and Action-Angle Variables 430
  • 10.1 The Hamilton-Jacobi Equation for Hamilton's Principal
  • Function 430
  • 10.2 The Harmonic Oscillator Problem as an Example of the
  • Hamilton-Jacobi Method 434
  • 10.3 The Hamilton-Jacobi Equation for Hamilton's Characteristic
  • Function 440
  • 10.4 Separation of Variables in the Hamilton-Jacobi Equation 444
  • 10.5 Ignorable Coordinates and the Kepler Problem 445 [
  • 10.6 Action-angle Variables in Systems of One Degree of Freedom 452
  • 10.7 Action-Angle Variables for Completely Separable Systems 457
  • 10.8 The Kepler Problem in Action-angle Variables 466
11  Classical Chaos 483
  • 11.1 Periodic Motion 484
  • 11.2 Perturbations and the Kolmogorov-Amold-Moser Theorem 487
  • 11.3 Attractors 489
  • 11.4 Chaotic Trajectories and Liapunov Exponents 491
  • 11.5 PoincareMaps 494
  • 11.6 Henon-Heiles Harniltonian 496
  • 11.7 Bifurcations, Driven-damped Harmonic Oscillator, and Parametric
  • Resonance 505
  • 11.8 The Logistic Equation 509
  • 11.9 Fractals and Dimensionality 516
12  Canonical Perturbation Theory 526
  • 12.1 Introduction 526
  • 12.2 Time-dependent Perturbation Theory 527
  • 12.3 Illustrations of Time-dependent Perturbation Theory 533
  • 12.4 Time-independent Perturbation Theory 541
  • 12.5 Adiabatic Invariants 549
13  Introduction to the Lagrangian and Hamiltonian
Formulations for Continuous Systems and Fields 558
  • 13.1 The Transition from a Discrete to a Continuous System 558
  • 13.2 The Lagrangian Formulation for Continuous Systems 561
  • 13.3 The Stress-energy Tensor and Conservation Theorems 566
  • 13.4 Hamiltonian Formulation 572
  • 13.5 Relativistic Field Theory 577
  • 13.6 Examples of Relativistic Field Theories 583
  • 13.7 Noether's Theorem 589
Appendix A ¦ Euler Angles in Alternate Conventions
and Cayley-Klein Parameters 601
Appendix B ¦ Groups and Algebras 605
Selected Bibliography 617
Author Index 623
Subject Index 625



Solution manual of Goldstein classical mechanics 2nd edition available...!!!
 

Tags :Physics E book library PDF Djvu eBook download  Classical Mechanics - 3rd edition - Goldstein, Poole & Safko Goldstein solution manual eBook download solution of goldstein classical mechanics