Planetary Science - The science of planets around stars-George H. A. Cole
Book information
- Book title :Planetary Science - The science of planets around stars
- Author : George H. A. Cole
File information
- File size : 7.01 Mb
- File format : DJVU File
Textbook content page titles
A REVIEW OF THE SOLAR SYSTEM
THE UNITY OF THE UNIVERSE 1
THE UNITY OF THE UNIVERSE 1
- 1.1. Cosmic abundance of the chemical elements 1
- 1.2. Some examples 2
- Pro blem 1 4
2 THE SUN AND OTHER STARS 6
- 2.1. The interstellar medium 6
- 2.2. Dense cool clouds 6
- 2.3. Stellar clusters 8
- 2.4. A scenario for formation of a galactic cluster 10
- 2.5. Main sequence stars and their evolution 12
- 2.6. Brown dwarfs 12
- 2.7. Stellar companions 12
- Pro blem 2 15
3 THE PLANETS 16
- 3.1. An overview of the planets 16
- 3.2. Orbital motions 16
- 3.3. Orbits of the planets 19
- 3.4. Planetary structures-general considerations 21
- 3.4.1. Planetary magnetic fields 24
- Pro blems 3 26
4 THE TERRESTRIAL PLANETS 27
- 4.1. Mercury 27
- 4.1.1. The surface of Mercury 28
- 4.1.2. Mercury's magnetic field 31
- 4.1.3. Mercury summary 31
- 4.2. Venus 32
- 4.2.1. The surface of Venus 32
- 4.2.2. The atmosphere of Venus 35
- 4.2.3. Venus and magnetism 38
- 4.2.4. Venus summary 38
- 4.3 The Earth 38
- 4.3.1. The shape of the Earth 39
- 4.3.2. Surface composition and age 39
- 4.3.3. Changing surface features 41
- 4.3.4. Surface plate structure 41
- 4.3.5. Heat flow through the surface 46
- 4.3.6. Earthquakes 49
- 4.3.6.1. The crust 51
- 4.3.6.2. The mantle 52
- 4.3.6.3. The core 52
- 4.3.7. The Earth's atmosphere 52
- 4.3.8. The Earth's magnetic field 53
- 4.3.9. Earth summary 54
- 4.4. Mars 54
- 4.4.1. The surface of Mars 54
- 4.4.1.1. The highlands 55
- 4.4.1.2. The plains 57
- 4.4.1.3. V olcanic regions 58
- 4.4.1.4. Channels and canyons 60
- 4.4.2. Consequences of early water 62
- 4.4.3. Later missions 62
- 4.4.4. The atmosphere of Mars 65
- 4.4.5. Magnetism and Mars 66
- 4.4.6. Mars summary 66
- Pro blem 4 67
5 THE MAJOR PLANETS AND PLUTO 68
- 5.1. Jupiter 68
- 5.1.1. The internal structure of Jupiter 68
- 5.1.2. Heat generation in Jupiter 69
- 5.1.3. The atmosphere of Jupiter 70
- 5.1.4. Jupiter's magnetic field 72
- 5.1.5. Jupiter summary 73
- 5.2. Saturn 74
- 5.2.1. The internal structure of Saturn 74
- 5.2.2. Heat generation in Saturn 75
- 5.2.3. The atmosphere of Saturn 75
- 5.2.4. Saturn's magnetic field 75
- 5.2.5. Saturn summary 76
- 5.3. Uranus 77
- 5.3.1. The internal structure of Uranus 78
- 5.3.2. Heat generation in Uranus 78
- 5.3.3. The atmosphere of Uranus 78
- 5.3.4. The magnetic field of Uranus
- 5.3.5. Uranus summary
- 5.4. Neptune
- 5.4.1. The internal structure of Neptune
- 5.4.2. Heat generation in Neptune
- 5.4.3. The atmosphere of Neptune
- 5.4.4. Neptune's magnetic field
- 5.4.5. Neptune summary
- 5.5. Pluto
- 5.5.1. Physical characteristics of Pluto
- 5.5.2. Relationship with Charon
- Pro blem 5
6 THE MOON
- 6.1. The physical characteristics of the Moon
- 6.1.1. The distance, size and orbit of the Moon
- 6.2. Earth-Moon interactions
- 6.2.1. The diurnal tides
- 6.2.2. The effects of tides on the Earth- Moon system
- 6.3. Lunar and solar eclipses
- 6.3.1. Solar eclipses
- 6.3.2. Eclipses of the Moon
- 6.4. The lunar surface
- 6.4.1. The maria
- 6.4.2. The highlands
- 6.4.3. Breccias
- 6.4.4. Regolith: lunar soil
- 6.5. The interior of the Moon
- 6.5.1. Gravity measurements
- 6.5.2. Lunar seismicity
- 6.5.3. The interior structure of the Moon
- 6.5.4. Heat flow and temperature measurements
- 6.6. Lunar magnetism
- 6.7. Some indications of lunar history
- 6.8. Moon summary
- Pro blems 6
7 SATELLITES AND RINGS
- 7.1. Types of satellites
- 7.2. The satellites of Mars
- 7.3. The satellites of Jupiter
- 7.3.1. Io
- 7.3.2. Europa
- 7.3.3. Ganymede
- 7.3.4. Callisto
- 7.3.5. Commensurabilities of the Galilean satellites
- 7.3.6. The smaller satellites of Jupiter
- 7.4. The satellites of Saturn 114
- 7.4.1. Titan and Hyperion 114
- 7.4.2. Mimas, Enceladus, Tethys, Dione and co-orbiting satellites 115
- 7.4.3. Rhea and Iapetus 117
- 7.4.4. Phoebe 117
- 7.4.5. Other small satellites 118
- 7.5. The satellites of Uranus 118
- 7.6. The satellites of Neptune 119
- 7.7. Pluto's satellite 120
- 7.8. Ring systems 120
- 7.8.1. The rings of Saturn 120
- 7.8.2. The rings of Uranus 122
- 7.8.3. The rings of Jupiter 122
- 7.8.4. The rings of Neptune 123
- 7.9. General observations 123
- Pro blem 7 123
- 8 ASTEROIDS 124
- 8.1. General characteristics 124
- 8.2. Types of asteroid orbits 126
- 8.3. The distribution of asteroid orbits-Kirkwood gaps 127
- 8.4. The compositions and possible origins of asteroids 128
- Pro blem 8 131
9 COMETS 132
- 9.1. Types of comet orbit 132
- 9.2. The physical structure of comets 135
- 9.3. The Oort cloud 139
- 9.4. The Kuiper belt 142
- Pro blems 9 143
10 METEORITES 144
- 10.1. Introduction 144
- 10.2. Stony meteorites 148
- 10.2.1. The systematics of chondri tic meteorites 148
- 10.2.2. Achondrites 151
- 10.3. Stony irons 153
- 10.4. Iron meteorites 155
- 10.5. The ages of meteorites 159
- 10.6. Isotopic anomalies in meteorites 159
- 10.6.1. Oxygen in meteorites 159
- 10.6.2. Magnesium in meteorites 160
- 10.6.3. Neon in meteorites 162
- 10.6.4. Other isotopic anomalies 163
- Problems 10 163
11 DUST IN THE SOLAR SYSTEM 164
- 11.1. Meteor showers 164
- 11.2. Zodiacal light and gegenschein 166
- 11.3. Radiation pressure and the Poynting- Robertson effect 166
- Problem 11 167
12 THEORIES OF THE ORIGIN AND EVOLUTION OF THE SOLAR SYSTEM 168
- 12.1. The coarse structure of the Solar System 168
- 12.2. The distribution of angular momentum 168
- 12.3. Other features of the Solar System 169
- 12.4. The Laplace nebula theory 170
- 12.4.1. Objections and difficulties 170
- 12.5. The Jeans tidal theory 171
- 12.5.1. Objections and difficulties 172
- 12.6. The Solar Nebula Theory 172
- 12.6.1. The transfer of angular momentum 173
- 12.6.2. The formation of planets 173
- 12.6.2.1. Settling of dust into the mean plane 174
- 12.6.2.2. Formation of planetesimals 174
- 12.6.2.3. Planets and cores from planetesimals 174
- 12.6.2.4. Gaseous envelopes 174
- 12.6.3. General comments 174
- 12.7. The capture theory 175
- 12.7.1. The basic scenario of the capture theory 175
- 12.7.2. Modelling the basic capture theory 175
- 12.7.3. Planetary orbits and satellites 176
- 12.7.4. General Comments 176
- 12.8. Ideas on the evolution of the Solar System 178
- 12.8.1. Precession of elliptical orbits 178
- 12.8.2. Near interactions between protoplanets 179
- 12.9. A planetary collision 179
- 12.9.1. The Earth and Venus 179
- 12.9.2. Asteroids, comets and meteorites 181
- 12.10. The origin of the Moon 181
- 12.10.1. Darwin's fission hypothesis 181
- 12.10.2. Co-accretion of the Earth and the Moon 182
- 12.10.3. Capture of the Moon 182
- 12.10.4. A single impact theory 183
- 12.10.5. Capture in a collision scenario 183
- 12.11. Other bodies in the Solar System 185
- 12.11.1. Mars and Mercury 185
- 12.11.2. Neptune, Triton, Pluto and Charon 185
- 12.12. Isotopic anomalies in meteorites 187
- 12.13. General comments on a planetary collision 189
- Problem 12 189
A. Basic mneralogy
- A.1. Types of rocks
- A.2. Types of minerals 191
- A.2.1. Silicates 192
- A.2.2. Carbonates 193
- A.2.3. Oxides 193
- A.2.4. Other minerals 194
- A.3. Rock composition and formation 194
- A.3.1. Igneous rocks 194
- A.3.2. Sedimentary rocks 196
- A.3.3. Metamorphic rocks 198
- A.3.3.1. Thermal metamorphism 199
- A.3.3.2. Pressure metamorphism 199
- A.3.3.3. Regional metamorphism 200
- Pro blems A 200
B GEOCHRONOLOGY - RADIOACTIVE DATING 202
- B.1. Comments on atomic structure 202
- B.1.1. Nuclear structure 202
- B.1.2. The emissions 203
- B.2. The laws governing radioactive decay 204
- B.2.1. The physical principles 204
- B.2.2. A simple age measurement 205
- B.2.3. Decay in a radioactive chain 205
- B.2.4. Bifurcated decay 206
- B.2.5. Age determination: the closure temperature 206
- B.2.6. The isochron diagram 208
- B.2.6.1. Rubidium ---+ strontium 208
- B.2.6.2. Samarium ---+ neodymium 210
- B.2.6.3. Rhenium ---+ osmium: lutetium ---+ hafnium 210
- B.2.6.4. Uranium ---+ lead 210
- B.2.6.5. Thorium ---+ lead 211
- B.2.6.6. Potassium ---+ argon 211
- B.2.7. The concordant diagram 211
- B.3. Using nuclear reactors 213
- B.3.1. Argon-argon dating 213
- B.3.2. Fission-track dating 214
- Pro blems B 215
C THE VIRIAL THEOREM 216
- Pro blems C 217
D THE JEANS CRITICAL MASS 218
- D.1. An application of the Virial Theorem 218
- D.2. From condensations to condensed bodies 220
- Pro blem D 221
- E FREE- FALL COLLAPSE 222
- Pro blem E 224
F THE EVOLUTION OF PROTOST ARS 225
- F.1. The Hertzsprung- Russell diagram 225
- F.2. The evolution of a protostar 227
- Pro blems F 229
G THE EQUILIBRIUM OF STARS ON THE MAIN SEQUENCE 230
- G.1. Conditions for modelling a main-sequence star 230
- G.2. The pressure gradient 231
- G.3. The included-mass gradient 232
- G.4. The luminosity gradient 232
- G.5. The temperature gradient 232
- G.6. Making models of stars 234
- Pro blem G 234
H ENERGY PRODUCTION IN STARS 235
- H.1. Proton-proton (p-p) reactions-a classical view 235
- H.2. A quantum-mechanical description 236
- H.2.1. The distribution of proton relative energies 237
- H.2.2. The rate of making close approaches 238
- H.2.3. The tunnelling probability 238
- H.2.4. The cross-section factor 239
- H.2.5. The energy generation function 239
- H.3. Nuclear reaction chains in the Sun 240
- Problem H 242
I EVOLUTION OF STARS AWAY FROM THE MAIN SEQUENCE 243
- 1.1. An overview of the evolutionary path 243
- 1.2. Hydrogen-shell burning 245
- 1.3. Helium ignition and helium core burning 246
- I.4. Hydrogen and helium shell burning 247
- 1.5. The evolution of higher mass stars 248
- 1.6. Final comments 250
- Problem I 250
J THE CHANDRASEKHAR LIMIT, NEUTRON STARS AND BLACK HOLES 251
- J.1. Some basic quantum mechanics principles 251
- J.2. Degeneracy and white dwarf stars 251
- J.3. Relativistic considerations 253
- J.4. Neutron stars and black holes 254
- Problems J 255
K PLANETS AROUND OTHER STARS 256
- K.l. Planets around neutron stars 256
- K.2. Effects of companions on the central star 256
- K.3. Finding the speed and mass of the planet 257
- K.4. The preliminary results of observations 260
- K.4.1. Mass distributions 260
- K.4.2. Characteristics of orbits 262
- K.5. The constitution of the companions Atmospheres
- K.6. Possibilities of conditions for life
- K.7. A final comment
- K.8. Pro blem K
L SOLAR-SYSTEM STUDIES TO THE BEGINNING OF THE SEVENTEENTH
CENTURY 265
CENTURY 265
- L.1. Views of the ancient world 265
- L.2. Nicolaus Copernicus 268
- L.3. Tycho Brahe 268
- L.4. Johannes Kepler 269
- L.4.1. Kepler's determination of orbital shapes 270
- L.5. Galileo Galilei 273
- Problems L 275
M NEWTON, KEPLER'S LAWS AND SOLAR-SYSTEM DYNAMICS 276
- M.1. Isaac Newton, Kepler and the inverse-square law 276
- M.2. General orbits 277
- M.3. Kepler's laws from the inverse-square-law force 279
- M.4. Establishing a Solar-System distance scale 281
- M.5. The dynamics of elliptical orbits 281
- M.6. Some special orbital situations 284
- M.6.1. Parabolic paths of projectiles 284
- M.6.2. Transfer orbits between planets 286
- Problems M 287
N THE FORMATION OF COMMENSURATE ORBITS 288
o THE ATMOSPHERE OF THE EARTH 293
o THE ATMOSPHERE OF THE EARTH 293
- 0.1. A simple isothermal atmosphere 293
- 0.2. The structure of the Earth's atmosphere 296
- 0.2.1. The variation of temperature with height 296
- 0.2.2. The upper reaches of the atmosphere 297
- 0.2.2.1. The exosphere 297
- 0.2.2.2. The thermosphere 301
- 0.2.2.3. The homopause 301
- 0.2.3. The lower reaches of the atmosphere 301
- 0.2.3.1. The mesosphere 301
- 0.2.3.2. The stratosphere and troposphere 302
- 0.3. The dynamics of the atmosphere 304
- Pro blems 0 306
P THE PHYSICS OF PLANETARY INTERIORS 307
- P.1. Introduction 307
- P.2. Applying the Virial Theorem 307
- P.3. The energies involved
- P.3.1. The kinetic (degeneracy) energy
- P.3.2. The electrostatic energy
- P.3.3. The gravitational energy
- P.3.4. The energies combined
- P.4. Maximum radius
- P.5. Conditions within a planet of maximum radius and mass
- P.6. Specifying a planet: the planetary body
- P.7. The minimum mass for a planetary body
- P.7.1. The rigidity of a solid body
- P.8. The internal structure of a planetary body
- P.8.1. The crust
- P.8.2. The maximum height of surface elevations
- P.8.3. Hydrostatic equilibrium
- P.8.4. Mantle and core
- P.8.5. Variation of pressure and density with depth
- P.8.6. Specifying K
- Pro blems P
Q THE TRANSFER OF HEAT
- Q.1. Conduction of heat in a solid
- Q.1.1. The equation of heat conduction in a solid
- Q.2. Comments on the description of fluid flows
- Q.2.1. The fluid parameters
- Q.2.2. The dimensionless parameters
- Q.2.3. Physical interpretation: rearrangements
- Pro blems Q
R SEISMOLOGY-THE INTERIOR OF THE EARTH
- R.I. The behaviour of planetary material for an impulsive release of energy
- R.1.1. Waves without a boundary
- R.1.2. Waves near a boundary surface
- R.1.3. Full-body waves
- R.2. Attenuation of seismic waves
- R.3. Seismometers and seismographs
- R.3.1. Travel times and seismic speeds
- R.3.2. Reflection and refraction across a boundary
- R.4. Seismic tomography
- R.5. Long-term hydrostatic equilibrium of planetary material
- R.6. The Adams-Williamson method using earthquake data
- R. 7. Moment of inertia considerations
- Pro blem R
S MOMENTS OF INERTIA
- S.1. The moment of inertia of a uniform sphere about a diameter
- S.2. The moment of inertia of a spherically symmetric distribution
- S.3. The moment of inertia of a spheroid about the symmetry axis
- Pro blem S
T THE GRAVITATIONAL FIELD OF A DISTORTED PLANET 339
- T.1. The gravitational potential of a spinning planet 339
- Pro blems T 340
U PRECESSION OF THE EARTH'S SPIN AXIS 341
- U1. The basic mechanism 341
- U2. The simple configuration 342
- Pro blem U 343
V INTRINSIC PLANETARY MAGNETISM 345
- V.1. Magnetic poles 345
- V.2. Magnetic elements: isomagnetic charts 346
- V.3. The form of the field 347
- V.4. Analysing the field 351
- V.5. The result for the Earth 352
- V.5.1. The dipole approximation 353
- V.5.2. The non-dipole component of the magnetic field 353
V.6. Time dependencies of the magnetic field 355
- V.6.1. The dipole field 355
- V.6.2. The non-dipole secular field-the secular variation 356
- V.6.3. Reversals of the direction of magnetization 358
- V.6.4. Pole wander 358
- V.6.5. Sea floor spreading 359
V.7. Magnetism of other Solar-System planets 361
V.8. Intrinsic magnetism of non-solar planets 363
- Pro blem V 363
W MAGNETIC INTERACTIONS BETWEEN PLANET AND STAR 364
- W.1. Transient magnetic components 364
- W.2. The origin of the atmospheric fields 366
- W.3. The solar wind 367
- W.4. Coupling between plasma streams and magnetic fields 369
- W.5. Effects of the solar wind 371
- W.5.1. The effect on the Earth's field 371
- W.5.2. The trapped particles 373
- W.5.3. Whistlers 373
- W.5.4. The plasma tail 373
W.6. The magnetospheres of other planets 375
- W.6.1. The major planets 375
- W.6.2. Examples of other planetary bodies 377
W.7. Motion through the interstellar medium 379
W.8. Companions to other stars 379
- Pro blem W 379
X PLANETARY ALBEDOES 380
- X.l. The brightness of Solar-System bodies seen from Earth 380
- X.2. The equilibrium temperature of the planets 381
- Pro blems X 382
Y THE PHYSICS OF TIDES
- y.1. The basics of the tide-raising mechanism
- Y.2. Spring tides and neap tides
- Y.3. The recession of the Moon from the Earth
- Y.4. The magnitude of the mid-ocean tide
- Y.4.1. Oscillations of fluid spheres
- Pro blems Y
Z DARWIN'S THEORY OF LUNAR ORIGIN
AA THE ROCHE LIMIT AND SATELLITE DISRUPTION
AA THE ROCHE LIMIT AND SATELLITE DISRUPTION
- AA.1. The Roche limit for fluid bodies
- AA.2. The Roche limit for a solid body
- AA.3. The disruption of a solid satellite
- AA.4. The sphere of influence
- Pro blems AA
AB TIDAL HEATING OF IO
- AB.1. Elastic hysteresis and Q values
- AB.2. Tidal stressing in Io
- Pro blems AB
AC THE RAM PRESSURE OF A GAS STREAM
- Problem AC
D THE TROJAN ASTEROIDS
- Pro blem AD
AE HEATING BY ACCRETION 411
- AE.1. Models for the accretion of planets and satellites 411
- AE.2. Accretion without melting 411
- AE.3. Accretion with melting 412
- AE.4. A more realistic initial thermal profile 414
- Problem AE 415
AF PERTURBATIONS OF THE OORT CLOUD 416
- AF.1. Stellar perturbations 416
- AF.2. Perturbations by giant molecular clouds 419
- AF.3. Perturbations by the galactic tidal field 420
- AF.4. Conclusion 422
- Problem AF 423
AG RADIATION PRESSURE AND THE POYNTING-ROBERTSON EFFECT 424
- AG.1. The force due to radiation pressure 424
- AG.2. The Poynting-Robertson effect 424
- Problem AG 425
AH ANALYSES ASSOCIATED WITH THE JEANS TIDAL THEORY 426
- AH.l. The tidal distortion and disruption of a star 426
- AH.2. The break-up of a filament and the formation of protoplanets 428
- Problem AH 429
AI THE VISCOUS-DISK MECHANISM FOR THE TRANSFER OF ANGULAR
MOMENTUM 430
MOMENTUM 430
- Problem AI 431
AJ MAGNETIC BRAKING OF THE SPINNING SUN 432
- AJ.1. Coupling of particles to field lines 432
- AJ.1.1. The form of the magnetic field 432
- AJ.1.2. The present rate of loss of angular momentum 433
- AJ.2. The early Sun 434
- Problem AJ 435
AK THE SAFRONOV THEORY OF PLANET FORMATION 436
- AK.1. Planetesimal formation 436
- AK.2. Planets from planetesimals 437
- Problem AK 439
AL THE EDDINGTON ACCRETION MECHANISM
- AL.1. The accretion cross section
- Pro blem AL
AM LIFE ON A HOSPITABLE PLANET
- AM.1. We are here
- AM.2. Early life on Earth
- AM.3. Chemical composition
- AM.4. General properties
- AM.5. Instability due to radiation: role of an atmosphere
- AM.6. Stability of the surface region
- AM.7. How many planets might carry advanced life? The Drake equation
- AM.8. Conclusion
AN THE ROLE OF SPACE VEHICLES
AO PLANETARY ATMOSPHERIC WARMING
AP MIGRATION OF PLANETARY ORBITS
- AP.1. Deflection in a hyperbolic orbit
- AP.2. Motion in an infinite uniform planar medium
- AP.3. Resistance for a highly elliptical orbit
- AP.4. Resistance for a circular orbit
- Pro blem AP
AQ INTERACTIONS IN AN EMBEDDED CLUSTER
- AQ.1. The initial conditions
SOLUTIONS TO PROBLEMS
Contents XVll
AQ.2. Conditions for an interaction
AQ.3. Numerical calculations
Problem AQ
APPENDIX I
PHYSICAL CONSTANTS
REFERENCES
INDEX
Contents XVll
AQ.2. Conditions for an interaction
AQ.3. Numerical calculations
Problem AQ
APPENDIX I
PHYSICAL CONSTANTS
REFERENCES
INDEX