Thursday, July 7, 2011

Planetary Science - The science of planets around stars-George H. A. Cole eBook download


Planetary Science - The science of planets around stars-George H. A. Cole
Book information
  • Book title                    :Planetary Science - The science of planets around stars
  • Author                         : George H. A. Cole
File information
  • File size                     : 7.01 Mb
  • File format                : DJVU File









Share

Textbook content page titles

A REVIEW OF THE SOLAR SYSTEM
THE UNITY OF THE UNIVERSE 1
  • 1.1. Cosmic abundance of the chemical elements 1
  • 1.2. Some examples 2
  • Pro blem 1 4
2 THE SUN AND OTHER STARS 6
  • 2.1. The interstellar medium 6
  • 2.2. Dense cool clouds 6
  • 2.3. Stellar clusters 8
  • 2.4. A scenario for formation of a galactic cluster 10
  • 2.5. Main sequence stars and their evolution 12
  • 2.6. Brown dwarfs 12
  • 2.7. Stellar companions 12
  • Pro blem 2 15
3 THE PLANETS 16
  • 3.1. An overview of the planets 16
  • 3.2. Orbital motions 16
  • 3.3. Orbits of the planets 19
  • 3.4. Planetary structures-general considerations 21
  • 3.4.1. Planetary magnetic fields 24
  • Pro blems 3 26
4 THE TERRESTRIAL PLANETS 27
  • 4.1. Mercury 27
  • 4.1.1. The surface of Mercury 28
  • 4.1.2. Mercury's magnetic field 31
  • 4.1.3. Mercury summary 31
  • 4.2. Venus 32
  • 4.2.1. The surface of Venus 32
  • 4.2.2. The atmosphere of Venus 35
  • 4.2.3. Venus and magnetism 38
  • 4.2.4. Venus summary 38
  • 4.3 The Earth 38
  • 4.3.1. The shape of the Earth 39
  • 4.3.2. Surface composition and age 39
  • 4.3.3. Changing surface features 41
  • 4.3.4. Surface plate structure 41
  • 4.3.5. Heat flow through the surface 46
  • 4.3.6. Earthquakes 49
  • 4.3.6.1. The crust 51
  • 4.3.6.2. The mantle 52
  • 4.3.6.3. The core 52
  • 4.3.7. The Earth's atmosphere 52
  • 4.3.8. The Earth's magnetic field 53
  • 4.3.9. Earth summary 54
  • 4.4. Mars 54
  • 4.4.1. The surface of Mars 54
  • 4.4.1.1. The highlands 55
  • 4.4.1.2. The plains 57
  • 4.4.1.3. V olcanic regions 58
  • 4.4.1.4. Channels and canyons 60
  • 4.4.2. Consequences of early water 62
  • 4.4.3. Later missions 62
  • 4.4.4. The atmosphere of Mars 65
  • 4.4.5. Magnetism and Mars 66
  • 4.4.6. Mars summary 66
  • Pro blem 4 67
5 THE MAJOR PLANETS AND PLUTO 68
  • 5.1. Jupiter 68
  • 5.1.1. The internal structure of Jupiter 68
  • 5.1.2. Heat generation in Jupiter 69
  • 5.1.3. The atmosphere of Jupiter 70
  • 5.1.4. Jupiter's magnetic field 72
  • 5.1.5. Jupiter summary 73
  • 5.2. Saturn 74
  • 5.2.1. The internal structure of Saturn 74
  • 5.2.2. Heat generation in Saturn 75
  • 5.2.3. The atmosphere of Saturn 75
  • 5.2.4. Saturn's magnetic field 75
  • 5.2.5. Saturn summary 76
  • 5.3. Uranus 77
  • 5.3.1. The internal structure of Uranus 78
  • 5.3.2. Heat generation in Uranus 78
  • 5.3.3. The atmosphere of Uranus 78
  • 5.3.4. The magnetic field of Uranus
  • 5.3.5. Uranus summary
  • 5.4. Neptune
  • 5.4.1. The internal structure of Neptune
  • 5.4.2. Heat generation in Neptune
  • 5.4.3. The atmosphere of Neptune
  • 5.4.4. Neptune's magnetic field
  • 5.4.5. Neptune summary
  • 5.5. Pluto
  • 5.5.1. Physical characteristics of Pluto
  • 5.5.2. Relationship with Charon
  • Pro blem 5
6 THE MOON
  • 6.1. The physical characteristics of the Moon
  • 6.1.1. The distance, size and orbit of the Moon
  • 6.2. Earth-Moon interactions
  • 6.2.1. The diurnal tides
  • 6.2.2. The effects of tides on the Earth- Moon system
  • 6.3. Lunar and solar eclipses
  • 6.3.1. Solar eclipses
  • 6.3.2. Eclipses of the Moon
  • 6.4. The lunar surface
  • 6.4.1. The maria
  • 6.4.2. The highlands
  • 6.4.3. Breccias
  • 6.4.4. Regolith: lunar soil
  • 6.5. The interior of the Moon
  • 6.5.1. Gravity measurements
  • 6.5.2. Lunar seismicity
  • 6.5.3. The interior structure of the Moon
  • 6.5.4. Heat flow and temperature measurements
  • 6.6. Lunar magnetism
  • 6.7. Some indications of lunar history
  • 6.8. Moon summary
  • Pro blems 6
7 SATELLITES AND RINGS
  • 7.1. Types of satellites
  • 7.2. The satellites of Mars
  • 7.3. The satellites of Jupiter
  • 7.3.1. Io
  • 7.3.2. Europa
  • 7.3.3. Ganymede
  • 7.3.4. Callisto
  • 7.3.5. Commensurabilities of the Galilean satellites
  • 7.3.6. The smaller satellites of Jupiter
  • 7.4. The satellites of Saturn 114
  • 7.4.1. Titan and Hyperion 114
  • 7.4.2. Mimas, Enceladus, Tethys, Dione and co-orbiting satellites 115
  • 7.4.3. Rhea and Iapetus 117
  • 7.4.4. Phoebe 117
  • 7.4.5. Other small satellites 118
  • 7.5. The satellites of Uranus 118
  • 7.6. The satellites of Neptune 119
  • 7.7. Pluto's satellite 120
  • 7.8. Ring systems 120
  • 7.8.1. The rings of Saturn 120
  • 7.8.2. The rings of Uranus 122
  • 7.8.3. The rings of Jupiter 122
  • 7.8.4. The rings of Neptune 123
  • 7.9. General observations 123
  • Pro blem 7 123
  • 8 ASTEROIDS 124
  • 8.1. General characteristics 124
  • 8.2. Types of asteroid orbits 126
  • 8.3. The distribution of asteroid orbits-Kirkwood gaps 127
  • 8.4. The compositions and possible origins of asteroids 128
  • Pro blem 8 131
9 COMETS 132
  • 9.1. Types of comet orbit 132
  • 9.2. The physical structure of comets 135
  • 9.3. The Oort cloud 139
  • 9.4. The Kuiper belt 142
  • Pro blems 9 143
10 METEORITES 144
  • 10.1. Introduction 144
  • 10.2. Stony meteorites 148
  • 10.2.1. The systematics of chondri tic meteorites 148
  • 10.2.2. Achondrites 151
  • 10.3. Stony irons 153
  • 10.4. Iron meteorites 155
  • 10.5. The ages of meteorites 159
  • 10.6. Isotopic anomalies in meteorites 159
  • 10.6.1. Oxygen in meteorites 159
  • 10.6.2. Magnesium in meteorites 160
  • 10.6.3. Neon in meteorites 162
  • 10.6.4. Other isotopic anomalies 163
  • Problems 10 163
11 DUST IN THE SOLAR SYSTEM 164
  • 11.1. Meteor showers 164
  • 11.2. Zodiacal light and gegenschein 166
  • 11.3. Radiation pressure and the Poynting- Robertson effect 166
  • Problem 11 167
12 THEORIES OF THE ORIGIN AND EVOLUTION OF THE SOLAR SYSTEM 168
  • 12.1. The coarse structure of the Solar System 168
  • 12.2. The distribution of angular momentum 168
  • 12.3. Other features of the Solar System 169
  • 12.4. The Laplace nebula theory 170
  • 12.4.1. Objections and difficulties 170
  • 12.5. The Jeans tidal theory 171
  • 12.5.1. Objections and difficulties 172
  • 12.6. The Solar Nebula Theory 172
  • 12.6.1. The transfer of angular momentum 173
  • 12.6.2. The formation of planets 173
  • 12.6.2.1. Settling of dust into the mean plane 174
  • 12.6.2.2. Formation of planetesimals 174
  • 12.6.2.3. Planets and cores from planetesimals 174
  • 12.6.2.4. Gaseous envelopes 174
  • 12.6.3. General comments 174
  • 12.7. The capture theory 175
  • 12.7.1. The basic scenario of the capture theory 175
  • 12.7.2. Modelling the basic capture theory 175
  • 12.7.3. Planetary orbits and satellites 176
  • 12.7.4. General Comments 176
  • 12.8. Ideas on the evolution of the Solar System 178
  • 12.8.1. Precession of elliptical orbits 178
  • 12.8.2. Near interactions between protoplanets 179
  • 12.9. A planetary collision 179
  • 12.9.1. The Earth and Venus 179
  • 12.9.2. Asteroids, comets and meteorites 181
  • 12.10. The origin of the Moon 181
  • 12.10.1. Darwin's fission hypothesis 181
  • 12.10.2. Co-accretion of the Earth and the Moon 182
  • 12.10.3. Capture of the Moon 182
  • 12.10.4. A single impact theory 183
  • 12.10.5. Capture in a collision scenario 183
  • 12.11. Other bodies in the Solar System 185
  • 12.11.1. Mars and Mercury 185
  • 12.11.2. Neptune, Triton, Pluto and Charon 185
  • 12.12. Isotopic anomalies in meteorites 187
  • 12.13. General comments on a planetary collision 189
  • Problem 12 189
A. Basic mneralogy
  • A.1. Types of rocks
  • A.2. Types of minerals 191
  • A.2.1. Silicates 192
  • A.2.2. Carbonates 193
  • A.2.3. Oxides 193
  • A.2.4. Other minerals 194
  • A.3. Rock composition and formation 194
  • A.3.1. Igneous rocks 194
  • A.3.2. Sedimentary rocks 196
  • A.3.3. Metamorphic rocks 198
  • A.3.3.1. Thermal metamorphism 199
  • A.3.3.2. Pressure metamorphism 199
  • A.3.3.3. Regional metamorphism 200
  • Pro blems A 200
B GEOCHRONOLOGY - RADIOACTIVE DATING 202
  • B.1. Comments on atomic structure 202
  • B.1.1. Nuclear structure 202
  • B.1.2. The emissions 203
  • B.2. The laws governing radioactive decay 204
  • B.2.1. The physical principles 204
  • B.2.2. A simple age measurement 205
  • B.2.3. Decay in a radioactive chain 205
  • B.2.4. Bifurcated decay 206
  • B.2.5. Age determination: the closure temperature 206
  • B.2.6. The isochron diagram 208
  • B.2.6.1. Rubidium ---+ strontium 208
  • B.2.6.2. Samarium ---+ neodymium 210
  • B.2.6.3. Rhenium ---+ osmium: lutetium ---+ hafnium 210
  • B.2.6.4. Uranium ---+ lead 210
  • B.2.6.5. Thorium ---+ lead 211
  • B.2.6.6. Potassium ---+ argon 211
  • B.2.7. The concordant diagram 211
  • B.3. Using nuclear reactors 213
  • B.3.1. Argon-argon dating 213
  • B.3.2. Fission-track dating 214
  • Pro blems B 215
C THE VIRIAL THEOREM 216
  • Pro blems C 217
D THE JEANS CRITICAL MASS 218
  • D.1. An application of the Virial Theorem 218
  • D.2. From condensations to condensed bodies 220
  • Pro blem D 221
  • E FREE- FALL COLLAPSE 222
  • Pro blem E 224
F THE EVOLUTION OF PROTOST ARS 225
  • F.1. The Hertzsprung- Russell diagram 225
  • F.2. The evolution of a protostar 227
  • Pro blems F 229
G THE EQUILIBRIUM OF STARS ON THE MAIN SEQUENCE 230
  • G.1. Conditions for modelling a main-sequence star 230
  • G.2. The pressure gradient 231
  • G.3. The included-mass gradient 232
  • G.4. The luminosity gradient 232
  • G.5. The temperature gradient 232
  • G.6. Making models of stars 234
  • Pro blem G 234
H ENERGY PRODUCTION IN STARS 235
  • H.1. Proton-proton (p-p) reactions-a classical view 235
  • H.2. A quantum-mechanical description 236
  • H.2.1. The distribution of proton relative energies 237
  • H.2.2. The rate of making close approaches 238
  • H.2.3. The tunnelling probability 238
  • H.2.4. The cross-section factor 239
  • H.2.5. The energy generation function 239
  • H.3. Nuclear reaction chains in the Sun 240
  • Problem H 242
I EVOLUTION OF STARS AWAY FROM THE MAIN SEQUENCE 243
  • 1.1. An overview of the evolutionary path 243
  • 1.2. Hydrogen-shell burning 245
  • 1.3. Helium ignition and helium core burning 246
  • I.4. Hydrogen and helium shell burning 247
  • 1.5. The evolution of higher mass stars 248
  • 1.6. Final comments 250
  • Problem I 250
J THE CHANDRASEKHAR LIMIT, NEUTRON STARS AND BLACK HOLES 251
  • J.1. Some basic quantum mechanics principles 251
  • J.2. Degeneracy and white dwarf stars 251
  • J.3. Relativistic considerations 253
  • J.4. Neutron stars and black holes 254
  • Problems J 255
K PLANETS AROUND OTHER STARS 256
  • K.l. Planets around neutron stars 256
  • K.2. Effects of companions on the central star 256
  • K.3. Finding the speed and mass of the planet 257
  • K.4. The preliminary results of observations 260
  • K.4.1. Mass distributions 260
  • K.4.2. Characteristics of orbits 262
  • K.5. The constitution of the companions Atmospheres
  • K.6. Possibilities of conditions for life
  • K.7. A final comment
  • K.8. Pro blem K
L SOLAR-SYSTEM STUDIES TO THE BEGINNING OF THE SEVENTEENTH
CENTURY 265
  • L.1. Views of the ancient world 265
  • L.2. Nicolaus Copernicus 268
  • L.3. Tycho Brahe 268
  • L.4. Johannes Kepler 269
  • L.4.1. Kepler's determination of orbital shapes 270
  • L.5. Galileo Galilei 273
  • Problems L 275
M NEWTON, KEPLER'S LAWS AND SOLAR-SYSTEM DYNAMICS 276
  • M.1. Isaac Newton, Kepler and the inverse-square law 276
  • M.2. General orbits 277
  • M.3. Kepler's laws from the inverse-square-law force 279
  • M.4. Establishing a Solar-System distance scale 281
  • M.5. The dynamics of elliptical orbits 281
  • M.6. Some special orbital situations 284
  • M.6.1. Parabolic paths of projectiles 284
  • M.6.2. Transfer orbits between planets 286
  • Problems M 287
N THE FORMATION OF COMMENSURATE ORBITS 288

o THE ATMOSPHERE OF THE EARTH 293
  • 0.1. A simple isothermal atmosphere 293
  • 0.2. The structure of the Earth's atmosphere 296
  • 0.2.1. The variation of temperature with height 296
  • 0.2.2. The upper reaches of the atmosphere 297
  • 0.2.2.1. The exosphere 297
  • 0.2.2.2. The thermosphere 301
  • 0.2.2.3. The homopause 301
  • 0.2.3. The lower reaches of the atmosphere 301
  • 0.2.3.1. The mesosphere 301
  • 0.2.3.2. The stratosphere and troposphere 302
  • 0.3. The dynamics of the atmosphere 304
  • Pro blems 0 306
P THE PHYSICS OF PLANETARY INTERIORS 307
  • P.1. Introduction 307
  • P.2. Applying the Virial Theorem 307
  • P.3. The energies involved
  • P.3.1. The kinetic (degeneracy) energy
  • P.3.2. The electrostatic energy
  • P.3.3. The gravitational energy
  • P.3.4. The energies combined
  • P.4. Maximum radius
  • P.5. Conditions within a planet of maximum radius and mass
  • P.6. Specifying a planet: the planetary body
  • P.7. The minimum mass for a planetary body
  • P.7.1. The rigidity of a solid body
  • P.8. The internal structure of a planetary body
  • P.8.1. The crust
  • P.8.2. The maximum height of surface elevations
  • P.8.3. Hydrostatic equilibrium
  • P.8.4. Mantle and core
  • P.8.5. Variation of pressure and density with depth
  • P.8.6. Specifying K
  • Pro blems P
Q THE TRANSFER OF HEAT
  • Q.1. Conduction of heat in a solid
  • Q.1.1. The equation of heat conduction in a solid
  • Q.2. Comments on the description of fluid flows
  • Q.2.1. The fluid parameters
  • Q.2.2. The dimensionless parameters
  • Q.2.3. Physical interpretation: rearrangements
  • Pro blems Q
R SEISMOLOGY-THE INTERIOR OF THE EARTH
  • R.I. The behaviour of planetary material for an impulsive release of energy
  • R.1.1. Waves without a boundary
  • R.1.2. Waves near a boundary surface
  • R.1.3. Full-body waves
  • R.2. Attenuation of seismic waves
  • R.3. Seismometers and seismographs
  • R.3.1. Travel times and seismic speeds
  • R.3.2. Reflection and refraction across a boundary
  • R.4. Seismic tomography
  • R.5. Long-term hydrostatic equilibrium of planetary material
  • R.6. The Adams-Williamson method using earthquake data
  • R. 7. Moment of inertia considerations
  • Pro blem R
S MOMENTS OF INERTIA
  • S.1. The moment of inertia of a uniform sphere about a diameter
  • S.2. The moment of inertia of a spherically symmetric distribution
  • S.3. The moment of inertia of a spheroid about the symmetry axis
  • Pro blem S
T THE GRAVITATIONAL FIELD OF A DISTORTED PLANET 339
  • T.1. The gravitational potential of a spinning planet 339
  • Pro blems T 340
U PRECESSION OF THE EARTH'S SPIN AXIS 341
  • U1. The basic mechanism 341
  • U2. The simple configuration 342
  • Pro blem U 343
V INTRINSIC PLANETARY MAGNETISM 345
  • V.1. Magnetic poles 345
  • V.2. Magnetic elements: isomagnetic charts 346
  • V.3. The form of the field 347
  • V.4. Analysing the field 351
  • V.5. The result for the Earth 352
  • V.5.1. The dipole approximation 353
  • V.5.2. The non-dipole component of the magnetic field 353
V.6. Time dependencies of the magnetic field 355
  • V.6.1. The dipole field 355
  • V.6.2. The non-dipole secular field-the secular variation 356
  • V.6.3. Reversals of the direction of magnetization 358
  • V.6.4. Pole wander 358
  • V.6.5. Sea floor spreading 359
V.7. Magnetism of other Solar-System planets 361

V.8. Intrinsic magnetism of non-solar planets 363
  • Pro blem V 363
W MAGNETIC INTERACTIONS BETWEEN PLANET AND STAR 364
  • W.1. Transient magnetic components 364
  • W.2. The origin of the atmospheric fields 366
  • W.3. The solar wind 367
  • W.4. Coupling between plasma streams and magnetic fields 369
  • W.5. Effects of the solar wind 371
  • W.5.1. The effect on the Earth's field 371
  • W.5.2. The trapped particles 373
  • W.5.3. Whistlers 373
  • W.5.4. The plasma tail 373
W.6. The magnetospheres of other planets 375
  • W.6.1. The major planets 375
  • W.6.2. Examples of other planetary bodies 377
W.7. Motion through the interstellar medium 379 

W.8. Companions to other stars 379
  • Pro blem W 379
X PLANETARY ALBEDOES 380
  • X.l. The brightness of Solar-System bodies seen from Earth 380
  • X.2. The equilibrium temperature of the planets 381
  • Pro blems X 382
Y THE PHYSICS OF TIDES
  • y.1. The basics of the tide-raising mechanism
  • Y.2. Spring tides and neap tides
  • Y.3. The recession of the Moon from the Earth
  • Y.4. The magnitude of the mid-ocean tide
  • Y.4.1. Oscillations of fluid spheres
  • Pro blems Y
Z DARWIN'S THEORY OF LUNAR ORIGIN

AA THE ROCHE LIMIT AND SATELLITE DISRUPTION
  • AA.1. The Roche limit for fluid bodies
  • AA.2. The Roche limit for a solid body
  • AA.3. The disruption of a solid satellite
  • AA.4. The sphere of influence
  • Pro blems AA
AB TIDAL HEATING OF IO
  • AB.1. Elastic hysteresis and Q values
  • AB.2. Tidal stressing in Io
  • Pro blems AB
AC THE RAM PRESSURE OF A GAS STREAM
  • Problem AC

D THE TROJAN ASTEROIDS
  • Pro blem AD
AE HEATING BY ACCRETION 411
  • AE.1. Models for the accretion of planets and satellites 411
  • AE.2. Accretion without melting 411
  • AE.3. Accretion with melting 412
  • AE.4. A more realistic initial thermal profile 414
  • Problem AE 415
AF PERTURBATIONS OF THE OORT CLOUD 416
  • AF.1. Stellar perturbations 416
  • AF.2. Perturbations by giant molecular clouds 419
  • AF.3. Perturbations by the galactic tidal field 420
  • AF.4. Conclusion 422
  • Problem AF 423
AG RADIATION PRESSURE AND THE POYNTING-ROBERTSON EFFECT 424
  • AG.1. The force due to radiation pressure 424
  • AG.2. The Poynting-Robertson effect 424
  • Problem AG 425
AH ANALYSES ASSOCIATED WITH THE JEANS TIDAL THEORY 426
  • AH.l. The tidal distortion and disruption of a star 426
  • AH.2. The break-up of a filament and the formation of protoplanets 428
  • Problem AH 429
AI THE VISCOUS-DISK MECHANISM FOR THE TRANSFER OF ANGULAR
MOMENTUM 430
  • Problem AI 431

AJ MAGNETIC BRAKING OF THE SPINNING SUN 432
  • AJ.1. Coupling of particles to field lines 432
  • AJ.1.1. The form of the magnetic field 432
  • AJ.1.2. The present rate of loss of angular momentum 433
  • AJ.2. The early Sun 434
  • Problem AJ 435
AK THE SAFRONOV THEORY OF PLANET FORMATION 436
  • AK.1. Planetesimal formation 436
  • AK.2. Planets from planetesimals 437
  • Problem AK 439
AL THE EDDINGTON ACCRETION MECHANISM
  • AL.1. The accretion cross section
  • Pro blem AL
AM LIFE ON A HOSPITABLE PLANET
  • AM.1. We are here
  • AM.2. Early life on Earth
  • AM.3. Chemical composition
  • AM.4. General properties
  • AM.5. Instability due to radiation: role of an atmosphere
  • AM.6. Stability of the surface region
  • AM.7. How many planets might carry advanced life? The Drake equation
  • AM.8. Conclusion

AN THE ROLE OF SPACE VEHICLES

AO PLANETARY ATMOSPHERIC WARMING

AP MIGRATION OF PLANETARY ORBITS
  • AP.1. Deflection in a hyperbolic orbit
  • AP.2. Motion in an infinite uniform planar medium
  • AP.3. Resistance for a highly elliptical orbit
  • AP.4. Resistance for a circular orbit
  • Pro blem AP
AQ INTERACTIONS IN AN EMBEDDED CLUSTER
  • AQ.1. The initial conditions
SOLUTIONS TO PROBLEMS


Contents XVll

AQ.2. Conditions for an interaction
AQ.3. Numerical calculations
Problem AQ


APPENDIX I



PHYSICAL CONSTANTS


REFERENCES


INDEX