Monday, July 25, 2011
Saturday, July 23, 2011
Friday, July 22, 2011
An Introduction to the Science of Cosmology -D. Raine E.G. Thomas eBook download
An Introduction to the Science of Cosmology - D. Raine E.G. Thomas
Book information
- Book title :An Introduction to the Science of Cosmology
- Author :D. Raine E.G. Thomas
File information
- File size :1.85 Mb
- File format : PDF File
Thursday, July 21, 2011
Astronomy: Principles and Practice-Fourth Edition Ebook download
Astronomy: Principles and Practice(4ed) - Roy,Clarke
Book information
File information
- File size :5.9 Mb
- File format : PDF File
Wednesday, July 20, 2011
Tuesday, July 19, 2011
Monday, July 18, 2011
Sunday, July 17, 2011
Saturday, July 16, 2011
Friday, July 15, 2011
The Art of Electronics 2ed-Horowitz eBook Download
The Art of Electronics 2ed-Horowitz
Book information
- Book title :The Art of Electronics 2ed
- Author :Horowitz
File information
- File size :15.30 Mb
- File format : DJVU File
Solution manual for this book available...!
Thursday, July 14, 2011
Wednesday, July 13, 2011
Tuesday, July 12, 2011
Monday, July 11, 2011
Sunday, July 10, 2011
Quantum mechanics video tutorials-Physics video tutorial series
Lecture - 1 Introduction to Quantum Physics;Heisenberg's uncertainty principle
Saturday, July 9, 2011
Friday, July 8, 2011
Thursday, July 7, 2011
Planetary Science - The science of planets around stars-George H. A. Cole eBook download
Planetary Science - The science of planets around stars-George H. A. Cole
Book information
- Book title :Planetary Science - The science of planets around stars
- Author : George H. A. Cole
File information
- File size : 7.01 Mb
- File format : DJVU File
Textbook content page titles
A REVIEW OF THE SOLAR SYSTEM
THE UNITY OF THE UNIVERSE 1
THE UNITY OF THE UNIVERSE 1
- 1.1. Cosmic abundance of the chemical elements 1
- 1.2. Some examples 2
- Pro blem 1 4
2 THE SUN AND OTHER STARS 6
- 2.1. The interstellar medium 6
- 2.2. Dense cool clouds 6
- 2.3. Stellar clusters 8
- 2.4. A scenario for formation of a galactic cluster 10
- 2.5. Main sequence stars and their evolution 12
- 2.6. Brown dwarfs 12
- 2.7. Stellar companions 12
- Pro blem 2 15
3 THE PLANETS 16
- 3.1. An overview of the planets 16
- 3.2. Orbital motions 16
- 3.3. Orbits of the planets 19
- 3.4. Planetary structures-general considerations 21
- 3.4.1. Planetary magnetic fields 24
- Pro blems 3 26
4 THE TERRESTRIAL PLANETS 27
- 4.1. Mercury 27
- 4.1.1. The surface of Mercury 28
- 4.1.2. Mercury's magnetic field 31
- 4.1.3. Mercury summary 31
- 4.2. Venus 32
- 4.2.1. The surface of Venus 32
- 4.2.2. The atmosphere of Venus 35
- 4.2.3. Venus and magnetism 38
- 4.2.4. Venus summary 38
- 4.3 The Earth 38
- 4.3.1. The shape of the Earth 39
- 4.3.2. Surface composition and age 39
- 4.3.3. Changing surface features 41
- 4.3.4. Surface plate structure 41
- 4.3.5. Heat flow through the surface 46
- 4.3.6. Earthquakes 49
- 4.3.6.1. The crust 51
- 4.3.6.2. The mantle 52
- 4.3.6.3. The core 52
- 4.3.7. The Earth's atmosphere 52
- 4.3.8. The Earth's magnetic field 53
- 4.3.9. Earth summary 54
- 4.4. Mars 54
- 4.4.1. The surface of Mars 54
- 4.4.1.1. The highlands 55
- 4.4.1.2. The plains 57
- 4.4.1.3. V olcanic regions 58
- 4.4.1.4. Channels and canyons 60
- 4.4.2. Consequences of early water 62
- 4.4.3. Later missions 62
- 4.4.4. The atmosphere of Mars 65
- 4.4.5. Magnetism and Mars 66
- 4.4.6. Mars summary 66
- Pro blem 4 67
5 THE MAJOR PLANETS AND PLUTO 68
- 5.1. Jupiter 68
- 5.1.1. The internal structure of Jupiter 68
- 5.1.2. Heat generation in Jupiter 69
- 5.1.3. The atmosphere of Jupiter 70
- 5.1.4. Jupiter's magnetic field 72
- 5.1.5. Jupiter summary 73
- 5.2. Saturn 74
- 5.2.1. The internal structure of Saturn 74
- 5.2.2. Heat generation in Saturn 75
- 5.2.3. The atmosphere of Saturn 75
- 5.2.4. Saturn's magnetic field 75
- 5.2.5. Saturn summary 76
- 5.3. Uranus 77
- 5.3.1. The internal structure of Uranus 78
- 5.3.2. Heat generation in Uranus 78
- 5.3.3. The atmosphere of Uranus 78
- 5.3.4. The magnetic field of Uranus
- 5.3.5. Uranus summary
- 5.4. Neptune
- 5.4.1. The internal structure of Neptune
- 5.4.2. Heat generation in Neptune
- 5.4.3. The atmosphere of Neptune
- 5.4.4. Neptune's magnetic field
- 5.4.5. Neptune summary
- 5.5. Pluto
- 5.5.1. Physical characteristics of Pluto
- 5.5.2. Relationship with Charon
- Pro blem 5
6 THE MOON
- 6.1. The physical characteristics of the Moon
- 6.1.1. The distance, size and orbit of the Moon
- 6.2. Earth-Moon interactions
- 6.2.1. The diurnal tides
- 6.2.2. The effects of tides on the Earth- Moon system
- 6.3. Lunar and solar eclipses
- 6.3.1. Solar eclipses
- 6.3.2. Eclipses of the Moon
- 6.4. The lunar surface
- 6.4.1. The maria
- 6.4.2. The highlands
- 6.4.3. Breccias
- 6.4.4. Regolith: lunar soil
- 6.5. The interior of the Moon
- 6.5.1. Gravity measurements
- 6.5.2. Lunar seismicity
- 6.5.3. The interior structure of the Moon
- 6.5.4. Heat flow and temperature measurements
- 6.6. Lunar magnetism
- 6.7. Some indications of lunar history
- 6.8. Moon summary
- Pro blems 6
7 SATELLITES AND RINGS
- 7.1. Types of satellites
- 7.2. The satellites of Mars
- 7.3. The satellites of Jupiter
- 7.3.1. Io
- 7.3.2. Europa
- 7.3.3. Ganymede
- 7.3.4. Callisto
- 7.3.5. Commensurabilities of the Galilean satellites
- 7.3.6. The smaller satellites of Jupiter
- 7.4. The satellites of Saturn 114
- 7.4.1. Titan and Hyperion 114
- 7.4.2. Mimas, Enceladus, Tethys, Dione and co-orbiting satellites 115
- 7.4.3. Rhea and Iapetus 117
- 7.4.4. Phoebe 117
- 7.4.5. Other small satellites 118
- 7.5. The satellites of Uranus 118
- 7.6. The satellites of Neptune 119
- 7.7. Pluto's satellite 120
- 7.8. Ring systems 120
- 7.8.1. The rings of Saturn 120
- 7.8.2. The rings of Uranus 122
- 7.8.3. The rings of Jupiter 122
- 7.8.4. The rings of Neptune 123
- 7.9. General observations 123
- Pro blem 7 123
- 8 ASTEROIDS 124
- 8.1. General characteristics 124
- 8.2. Types of asteroid orbits 126
- 8.3. The distribution of asteroid orbits-Kirkwood gaps 127
- 8.4. The compositions and possible origins of asteroids 128
- Pro blem 8 131
9 COMETS 132
- 9.1. Types of comet orbit 132
- 9.2. The physical structure of comets 135
- 9.3. The Oort cloud 139
- 9.4. The Kuiper belt 142
- Pro blems 9 143
10 METEORITES 144
- 10.1. Introduction 144
- 10.2. Stony meteorites 148
- 10.2.1. The systematics of chondri tic meteorites 148
- 10.2.2. Achondrites 151
- 10.3. Stony irons 153
- 10.4. Iron meteorites 155
- 10.5. The ages of meteorites 159
- 10.6. Isotopic anomalies in meteorites 159
- 10.6.1. Oxygen in meteorites 159
- 10.6.2. Magnesium in meteorites 160
- 10.6.3. Neon in meteorites 162
- 10.6.4. Other isotopic anomalies 163
- Problems 10 163
11 DUST IN THE SOLAR SYSTEM 164
- 11.1. Meteor showers 164
- 11.2. Zodiacal light and gegenschein 166
- 11.3. Radiation pressure and the Poynting- Robertson effect 166
- Problem 11 167
12 THEORIES OF THE ORIGIN AND EVOLUTION OF THE SOLAR SYSTEM 168
- 12.1. The coarse structure of the Solar System 168
- 12.2. The distribution of angular momentum 168
- 12.3. Other features of the Solar System 169
- 12.4. The Laplace nebula theory 170
- 12.4.1. Objections and difficulties 170
- 12.5. The Jeans tidal theory 171
- 12.5.1. Objections and difficulties 172
- 12.6. The Solar Nebula Theory 172
- 12.6.1. The transfer of angular momentum 173
- 12.6.2. The formation of planets 173
- 12.6.2.1. Settling of dust into the mean plane 174
- 12.6.2.2. Formation of planetesimals 174
- 12.6.2.3. Planets and cores from planetesimals 174
- 12.6.2.4. Gaseous envelopes 174
- 12.6.3. General comments 174
- 12.7. The capture theory 175
- 12.7.1. The basic scenario of the capture theory 175
- 12.7.2. Modelling the basic capture theory 175
- 12.7.3. Planetary orbits and satellites 176
- 12.7.4. General Comments 176
- 12.8. Ideas on the evolution of the Solar System 178
- 12.8.1. Precession of elliptical orbits 178
- 12.8.2. Near interactions between protoplanets 179
- 12.9. A planetary collision 179
- 12.9.1. The Earth and Venus 179
- 12.9.2. Asteroids, comets and meteorites 181
- 12.10. The origin of the Moon 181
- 12.10.1. Darwin's fission hypothesis 181
- 12.10.2. Co-accretion of the Earth and the Moon 182
- 12.10.3. Capture of the Moon 182
- 12.10.4. A single impact theory 183
- 12.10.5. Capture in a collision scenario 183
- 12.11. Other bodies in the Solar System 185
- 12.11.1. Mars and Mercury 185
- 12.11.2. Neptune, Triton, Pluto and Charon 185
- 12.12. Isotopic anomalies in meteorites 187
- 12.13. General comments on a planetary collision 189
- Problem 12 189
A. Basic mneralogy
- A.1. Types of rocks
- A.2. Types of minerals 191
- A.2.1. Silicates 192
- A.2.2. Carbonates 193
- A.2.3. Oxides 193
- A.2.4. Other minerals 194
- A.3. Rock composition and formation 194
- A.3.1. Igneous rocks 194
- A.3.2. Sedimentary rocks 196
- A.3.3. Metamorphic rocks 198
- A.3.3.1. Thermal metamorphism 199
- A.3.3.2. Pressure metamorphism 199
- A.3.3.3. Regional metamorphism 200
- Pro blems A 200
B GEOCHRONOLOGY - RADIOACTIVE DATING 202
- B.1. Comments on atomic structure 202
- B.1.1. Nuclear structure 202
- B.1.2. The emissions 203
- B.2. The laws governing radioactive decay 204
- B.2.1. The physical principles 204
- B.2.2. A simple age measurement 205
- B.2.3. Decay in a radioactive chain 205
- B.2.4. Bifurcated decay 206
- B.2.5. Age determination: the closure temperature 206
- B.2.6. The isochron diagram 208
- B.2.6.1. Rubidium ---+ strontium 208
- B.2.6.2. Samarium ---+ neodymium 210
- B.2.6.3. Rhenium ---+ osmium: lutetium ---+ hafnium 210
- B.2.6.4. Uranium ---+ lead 210
- B.2.6.5. Thorium ---+ lead 211
- B.2.6.6. Potassium ---+ argon 211
- B.2.7. The concordant diagram 211
- B.3. Using nuclear reactors 213
- B.3.1. Argon-argon dating 213
- B.3.2. Fission-track dating 214
- Pro blems B 215
C THE VIRIAL THEOREM 216
- Pro blems C 217
D THE JEANS CRITICAL MASS 218
- D.1. An application of the Virial Theorem 218
- D.2. From condensations to condensed bodies 220
- Pro blem D 221
- E FREE- FALL COLLAPSE 222
- Pro blem E 224
F THE EVOLUTION OF PROTOST ARS 225
- F.1. The Hertzsprung- Russell diagram 225
- F.2. The evolution of a protostar 227
- Pro blems F 229
G THE EQUILIBRIUM OF STARS ON THE MAIN SEQUENCE 230
- G.1. Conditions for modelling a main-sequence star 230
- G.2. The pressure gradient 231
- G.3. The included-mass gradient 232
- G.4. The luminosity gradient 232
- G.5. The temperature gradient 232
- G.6. Making models of stars 234
- Pro blem G 234
H ENERGY PRODUCTION IN STARS 235
- H.1. Proton-proton (p-p) reactions-a classical view 235
- H.2. A quantum-mechanical description 236
- H.2.1. The distribution of proton relative energies 237
- H.2.2. The rate of making close approaches 238
- H.2.3. The tunnelling probability 238
- H.2.4. The cross-section factor 239
- H.2.5. The energy generation function 239
- H.3. Nuclear reaction chains in the Sun 240
- Problem H 242
I EVOLUTION OF STARS AWAY FROM THE MAIN SEQUENCE 243
- 1.1. An overview of the evolutionary path 243
- 1.2. Hydrogen-shell burning 245
- 1.3. Helium ignition and helium core burning 246
- I.4. Hydrogen and helium shell burning 247
- 1.5. The evolution of higher mass stars 248
- 1.6. Final comments 250
- Problem I 250
J THE CHANDRASEKHAR LIMIT, NEUTRON STARS AND BLACK HOLES 251
- J.1. Some basic quantum mechanics principles 251
- J.2. Degeneracy and white dwarf stars 251
- J.3. Relativistic considerations 253
- J.4. Neutron stars and black holes 254
- Problems J 255
K PLANETS AROUND OTHER STARS 256
- K.l. Planets around neutron stars 256
- K.2. Effects of companions on the central star 256
- K.3. Finding the speed and mass of the planet 257
- K.4. The preliminary results of observations 260
- K.4.1. Mass distributions 260
- K.4.2. Characteristics of orbits 262
- K.5. The constitution of the companions Atmospheres
- K.6. Possibilities of conditions for life
- K.7. A final comment
- K.8. Pro blem K
L SOLAR-SYSTEM STUDIES TO THE BEGINNING OF THE SEVENTEENTH
CENTURY 265
CENTURY 265
- L.1. Views of the ancient world 265
- L.2. Nicolaus Copernicus 268
- L.3. Tycho Brahe 268
- L.4. Johannes Kepler 269
- L.4.1. Kepler's determination of orbital shapes 270
- L.5. Galileo Galilei 273
- Problems L 275
M NEWTON, KEPLER'S LAWS AND SOLAR-SYSTEM DYNAMICS 276
- M.1. Isaac Newton, Kepler and the inverse-square law 276
- M.2. General orbits 277
- M.3. Kepler's laws from the inverse-square-law force 279
- M.4. Establishing a Solar-System distance scale 281
- M.5. The dynamics of elliptical orbits 281
- M.6. Some special orbital situations 284
- M.6.1. Parabolic paths of projectiles 284
- M.6.2. Transfer orbits between planets 286
- Problems M 287
N THE FORMATION OF COMMENSURATE ORBITS 288
o THE ATMOSPHERE OF THE EARTH 293
o THE ATMOSPHERE OF THE EARTH 293
- 0.1. A simple isothermal atmosphere 293
- 0.2. The structure of the Earth's atmosphere 296
- 0.2.1. The variation of temperature with height 296
- 0.2.2. The upper reaches of the atmosphere 297
- 0.2.2.1. The exosphere 297
- 0.2.2.2. The thermosphere 301
- 0.2.2.3. The homopause 301
- 0.2.3. The lower reaches of the atmosphere 301
- 0.2.3.1. The mesosphere 301
- 0.2.3.2. The stratosphere and troposphere 302
- 0.3. The dynamics of the atmosphere 304
- Pro blems 0 306
P THE PHYSICS OF PLANETARY INTERIORS 307
- P.1. Introduction 307
- P.2. Applying the Virial Theorem 307
- P.3. The energies involved
- P.3.1. The kinetic (degeneracy) energy
- P.3.2. The electrostatic energy
- P.3.3. The gravitational energy
- P.3.4. The energies combined
- P.4. Maximum radius
- P.5. Conditions within a planet of maximum radius and mass
- P.6. Specifying a planet: the planetary body
- P.7. The minimum mass for a planetary body
- P.7.1. The rigidity of a solid body
- P.8. The internal structure of a planetary body
- P.8.1. The crust
- P.8.2. The maximum height of surface elevations
- P.8.3. Hydrostatic equilibrium
- P.8.4. Mantle and core
- P.8.5. Variation of pressure and density with depth
- P.8.6. Specifying K
- Pro blems P
Q THE TRANSFER OF HEAT
- Q.1. Conduction of heat in a solid
- Q.1.1. The equation of heat conduction in a solid
- Q.2. Comments on the description of fluid flows
- Q.2.1. The fluid parameters
- Q.2.2. The dimensionless parameters
- Q.2.3. Physical interpretation: rearrangements
- Pro blems Q
R SEISMOLOGY-THE INTERIOR OF THE EARTH
- R.I. The behaviour of planetary material for an impulsive release of energy
- R.1.1. Waves without a boundary
- R.1.2. Waves near a boundary surface
- R.1.3. Full-body waves
- R.2. Attenuation of seismic waves
- R.3. Seismometers and seismographs
- R.3.1. Travel times and seismic speeds
- R.3.2. Reflection and refraction across a boundary
- R.4. Seismic tomography
- R.5. Long-term hydrostatic equilibrium of planetary material
- R.6. The Adams-Williamson method using earthquake data
- R. 7. Moment of inertia considerations
- Pro blem R
S MOMENTS OF INERTIA
- S.1. The moment of inertia of a uniform sphere about a diameter
- S.2. The moment of inertia of a spherically symmetric distribution
- S.3. The moment of inertia of a spheroid about the symmetry axis
- Pro blem S
T THE GRAVITATIONAL FIELD OF A DISTORTED PLANET 339
- T.1. The gravitational potential of a spinning planet 339
- Pro blems T 340
U PRECESSION OF THE EARTH'S SPIN AXIS 341
- U1. The basic mechanism 341
- U2. The simple configuration 342
- Pro blem U 343
V INTRINSIC PLANETARY MAGNETISM 345
- V.1. Magnetic poles 345
- V.2. Magnetic elements: isomagnetic charts 346
- V.3. The form of the field 347
- V.4. Analysing the field 351
- V.5. The result for the Earth 352
- V.5.1. The dipole approximation 353
- V.5.2. The non-dipole component of the magnetic field 353
V.6. Time dependencies of the magnetic field 355
- V.6.1. The dipole field 355
- V.6.2. The non-dipole secular field-the secular variation 356
- V.6.3. Reversals of the direction of magnetization 358
- V.6.4. Pole wander 358
- V.6.5. Sea floor spreading 359
V.7. Magnetism of other Solar-System planets 361
V.8. Intrinsic magnetism of non-solar planets 363
- Pro blem V 363
W MAGNETIC INTERACTIONS BETWEEN PLANET AND STAR 364
- W.1. Transient magnetic components 364
- W.2. The origin of the atmospheric fields 366
- W.3. The solar wind 367
- W.4. Coupling between plasma streams and magnetic fields 369
- W.5. Effects of the solar wind 371
- W.5.1. The effect on the Earth's field 371
- W.5.2. The trapped particles 373
- W.5.3. Whistlers 373
- W.5.4. The plasma tail 373
W.6. The magnetospheres of other planets 375
- W.6.1. The major planets 375
- W.6.2. Examples of other planetary bodies 377
W.7. Motion through the interstellar medium 379
W.8. Companions to other stars 379
- Pro blem W 379
X PLANETARY ALBEDOES 380
- X.l. The brightness of Solar-System bodies seen from Earth 380
- X.2. The equilibrium temperature of the planets 381
- Pro blems X 382
Y THE PHYSICS OF TIDES
- y.1. The basics of the tide-raising mechanism
- Y.2. Spring tides and neap tides
- Y.3. The recession of the Moon from the Earth
- Y.4. The magnitude of the mid-ocean tide
- Y.4.1. Oscillations of fluid spheres
- Pro blems Y
Z DARWIN'S THEORY OF LUNAR ORIGIN
AA THE ROCHE LIMIT AND SATELLITE DISRUPTION
AA THE ROCHE LIMIT AND SATELLITE DISRUPTION
- AA.1. The Roche limit for fluid bodies
- AA.2. The Roche limit for a solid body
- AA.3. The disruption of a solid satellite
- AA.4. The sphere of influence
- Pro blems AA
AB TIDAL HEATING OF IO
- AB.1. Elastic hysteresis and Q values
- AB.2. Tidal stressing in Io
- Pro blems AB
AC THE RAM PRESSURE OF A GAS STREAM
- Problem AC
D THE TROJAN ASTEROIDS
- Pro blem AD
AE HEATING BY ACCRETION 411
- AE.1. Models for the accretion of planets and satellites 411
- AE.2. Accretion without melting 411
- AE.3. Accretion with melting 412
- AE.4. A more realistic initial thermal profile 414
- Problem AE 415
AF PERTURBATIONS OF THE OORT CLOUD 416
- AF.1. Stellar perturbations 416
- AF.2. Perturbations by giant molecular clouds 419
- AF.3. Perturbations by the galactic tidal field 420
- AF.4. Conclusion 422
- Problem AF 423
AG RADIATION PRESSURE AND THE POYNTING-ROBERTSON EFFECT 424
- AG.1. The force due to radiation pressure 424
- AG.2. The Poynting-Robertson effect 424
- Problem AG 425
AH ANALYSES ASSOCIATED WITH THE JEANS TIDAL THEORY 426
- AH.l. The tidal distortion and disruption of a star 426
- AH.2. The break-up of a filament and the formation of protoplanets 428
- Problem AH 429
AI THE VISCOUS-DISK MECHANISM FOR THE TRANSFER OF ANGULAR
MOMENTUM 430
MOMENTUM 430
- Problem AI 431
AJ MAGNETIC BRAKING OF THE SPINNING SUN 432
- AJ.1. Coupling of particles to field lines 432
- AJ.1.1. The form of the magnetic field 432
- AJ.1.2. The present rate of loss of angular momentum 433
- AJ.2. The early Sun 434
- Problem AJ 435
AK THE SAFRONOV THEORY OF PLANET FORMATION 436
- AK.1. Planetesimal formation 436
- AK.2. Planets from planetesimals 437
- Problem AK 439
AL THE EDDINGTON ACCRETION MECHANISM
- AL.1. The accretion cross section
- Pro blem AL
AM LIFE ON A HOSPITABLE PLANET
- AM.1. We are here
- AM.2. Early life on Earth
- AM.3. Chemical composition
- AM.4. General properties
- AM.5. Instability due to radiation: role of an atmosphere
- AM.6. Stability of the surface region
- AM.7. How many planets might carry advanced life? The Drake equation
- AM.8. Conclusion
AN THE ROLE OF SPACE VEHICLES
AO PLANETARY ATMOSPHERIC WARMING
AP MIGRATION OF PLANETARY ORBITS
- AP.1. Deflection in a hyperbolic orbit
- AP.2. Motion in an infinite uniform planar medium
- AP.3. Resistance for a highly elliptical orbit
- AP.4. Resistance for a circular orbit
- Pro blem AP
AQ INTERACTIONS IN AN EMBEDDED CLUSTER
- AQ.1. The initial conditions
SOLUTIONS TO PROBLEMS
Contents XVll
AQ.2. Conditions for an interaction
AQ.3. Numerical calculations
Problem AQ
APPENDIX I
PHYSICAL CONSTANTS
REFERENCES
INDEX
Contents XVll
AQ.2. Conditions for an interaction
AQ.3. Numerical calculations
Problem AQ
APPENDIX I
PHYSICAL CONSTANTS
REFERENCES
INDEX
Subscribe to:
Posts (Atom)