Wednesday, September 21, 2011

Mathematical Physics - Eugene Butkov eBook download


Mathematical Physics - Eugene Butkov

Textbook information
  • Text book title             :Mathematical Physics
  • Author                         : Eugene Butkov
File information
  • File size                     : 6.81 Mb
  • File format                : DJVU File









Share 

Content page

Chapter 1 Vectors, Matrices, and Coordinates
  • 1.1 Introduction 1
  • 1.2 Vectors in Cartesian Coordinate Systems 1
  • 1.3 Changes of Axes. Rotation Matrices 4
  • 1.4 Repeated Rotations. Matrix Multiplication 8
  • 1.5 Skew Cartesian Systems. Matrices in General 11
  • 1.6 Scalar and Vector Fields 14
  • 1.7 Vector Fields in Plane 20
  • 1.8 Vector Fields in Space 26
  • 1.9 Curvilinear Coordinates 34
Chapter 2 Functions of a Complex Variable
  • 2.1 Complex Numbers 44
  • 2.2 Basic Algebra and Geometry of Complex Numbers 45
  • 2.3 De Moivre Formula and the Calculation of Roots 48
  • 2.4 Complex Functions. Euler's Formula 49
  • 2.5 Applications of Euler's Formula 51
  • 2.6 Multivalued Functions and Riemann Surfaces 54
  • 2.7 Analytic Functions. Cauchy Theorem 58
  • 2.8 Other Integral Theorems. Cauchy Integral Formula 62
  • 2.9 Complex Sequences and Series 66
  • 2.10 Taylor and Laurent Series 71
  • 2.11 Zeros and Singularities 78
  • 2.12 The Residue Theorem and its Applications 83
  • 2.13 Conformal Mapping by Analytic Functions 97
  • 2.14 Complex Sphere and Point at Infinity 102
  • 2.15 Integral Representations 104
Chapter 3 Linear Differential Equations of Second Order
  • 3.1 General Introduction. The Wronskian 123
  • 3.2 General Solution of The Homogeneous Equation 125
  • 3.3 The Nonhomogeneous Equation. Variation of Constants . . . . 126
  • 3.4 Power Series Solutions 128
  • 3.5 The Frobenius Method 130
  • 3.6 Some other Methods of Solution 147 
 4 Fourier Series
  • 4.1 Trigonometric Series 154
  • 4.2 Definition of Fourier Series 155
  • 4.3 Examples of Fourier Series' 157
  • 4.4 Parity Properties. Sine and Cosine Series 161
  • 4.5 Complex Form of Fourier Series 165
  • 4.6 Pointwise Convergence of Fourier Series 167
  • 4.7 Convergence in the Mean 168
  • 4.8 Applications of Fourier Series 172
Chapter 5 The Laplace Transformation
  • 5.1 Operational Calculus 179
  • 5.2 The Laplace Integral 180
  • 5.3 Basic Properties of Laplace Transform 184
  • 5.4 The Inversion Problem 187
  • 5.5 The Rational Fraction Decomposition 189
  • 5.6 The Convolution Theorem 194
  • 5.7 Additional Properties of Laplace Transform 200
  • 5.8 Periodic Functions. Rectification 204
  • 5.9 The Mellin Inversion Integral *. 206
  • 5.10 Applications of Laplace Transforms . . .• 210
Chapter 6 Concepts of the Theory of Distributions
  • 6.1 Strongly Peaked Functions and The Dirac Delta Function . . . 221
  • 6.2 Delta Sequences 223
  • 6.3 The 6-Calculus 226
  • 6.4 Representations of Delta Functions 229
  • 6.5 Applications of The 6-Calculus 232
  • 6.6 Weak Convergence 236
  • 6.7 Correspondence of Functions and Distributions 240
  • 6.8 Properties of Distributions 245
  • 6.9 Sequences and Series of Distributions 250
  • 6.10 Distributions in N dimensions 257
Chapter 7 Fourier Transforms
  • 7.1 Representations of a Function 260
  • 7.2 Examples of Fourier Transformations 262
  • 7.3 Properties of Fourier Transforms 266
  • 7.4 Fourier Integral Theorem 269
  • 7.5 Fourier Transforms of Distributions 271
  • 7.6 Fourier Sine and Cosine Transforms 273
  • 7.7 Applications of Fourier Transforms. The Principle of Causality . . 276
 Chapter 8 Partial Differential Equations
  • 8.1 The Stretched String. Wave Equation 287
  • 8.2 The Method of Separation of Variables 291
  • 8.3 Laplace and Poisson Equations 295
  • 8.4 The Diffusion Equation 297
  • 8.5 Use of Fourier and Laplace Transforms 299
  • 8.6 The Method of Eigenfunction Expansions and Finite Transforms . 304
  • 8.7 Continuous Eigenvalue Spectrum 308
  • 8.8 Vibrations of a Membrane. Degeneracy 313
  • 8.9 Propagation of Sound. Helmholtz Equation 319
Chapter 9 Special Functions
  • 9.1 Cylindrical and Spherical Coordinates 332
  • 9.2 The Common Boundary-Value Problems 334
  • 9.3 The Sturm-Liouville Problem 337
  • 9.4 Self-Adjoint Operators 340
  • 9.5 Legendre Polynomials 342
  • 9.6 Fourier-Legendre Series 350
  • 9.7 Bessel Functions 355
  • 9.8 Associated Legendre Functions and Spherical Harmonics .... 372
  • 9.9 Spherical Bessel Functions 381
  • 9.10 Neumann Functions 388
  • 9.11 Modified Bessel Functions 394
Chapter 10 Finite-Dimensional Linear Spaces
  • 10.1 Oscillations of Systems with Two Degrees of Freedom .... 405
  • 10.2 Normal Coordinates and Linear Transformations 411
  • 10.3 Vector Spaces, Bases, Coordinates 419
  • 10.4 Linear Operators, Matrices, Inverses . ■ 424
  • 10.5 Changes of Basis 433
  • 10.6 Inner Product. Orthogonality. Unitary Operators 437
  • 10.7 The Metric. Generalized Orthogonality 441
  • 10.8 Eigenvalue Problems. Diagonalization 443
  • 10.9 Simultaneous Diagonalization 451
Chapter 11 Infinite-Dimensional Vector Spaces
  • 11.1 Spaces of Functions 463
  • 11.2 The Postulates of Quantum Mechanics 467
  • 11.3 The Harmonic Oscillator 471
  • 11.4 Matrix Representations of Linear Operators 476
  • 11.5 Algebraic Methods of Solution 483
  • 11.6 Bases with Generalized Orthogonality 488
  • 11.7 Stretched String with a Discrete Mass in the Middle 492
  • 11.8 Applications of Eigenfunctions 495
Chapter 12 Green's Functions
  • 12.1 Introduction 503
  • 12.2 Green's Function for the Sturm-Liouville Operator 508
  • 12.3 Series Expansions for G(x\ £) 514
  • 12.4 Green's Functions in Two Dimensions 520
  • 12.5 Green's Functions for Initial Conditions 523
  • 12.6 Green's Functions with Reflection Properties 527
  • 12.7 Green's Functions for Boundary Conditions 531
  • 12.8 The Green's Function Method 536
  • 12.9 A Case of Continuous Spectrum 543
Chapter 13 Variational Methods
  • 13.1 The Brachistochrone Problem 553
  • 13.2 The Euler-Lagrange Equation 554
  • 13.3 Hamilton's Principle 560
  • 13.4 Problems involving Sturm-Liouville Operators 562
  • 13.5 The Rayleigh-Ritz Method 565
  • 13.6 Variational Problems with Constraints 567
  • 13.7 Variational Formulation of Eigenvalue Problems 573
  • 13.8 Variational Problems in Many Dimensions 577
  • 13.9 Formulation of Eigenvalue Problems by The Ratio Method . . . 581
Chapter 14 Traveling Waves, Radiation, Scattering
  • 14.1 Motion of Infinite Stretched String 589
  • 14.2 Propagation of Initial Conditions 592
  • 14.3 Semi-infinite String. Use of Symmetry Properties 595
  • 14.4 Energy and Power Flow in a Stretched String 599
  • 14.5 Generation of Waves in a Stretched String 603
  • 14.6 Radiation of Sound from a Pulsating Sphere 611
  • 14.7 The Retarded Potential 619
  • 14.8 Traveling Waves in Nonhomogeneous Media 624
  • 14.9 Scattering Amplitudes and Phase Shifts 628
  • 14.10 Scattering in Three Dimensions. Partial Wave Analysis . . . 633
Chapter 15 Perturbation Methods
  • 15.1 Introduction 644
  • 15.2 The Born Approximation 647
  • 15.3 Perturbation of Eigenvalue Problems 650
  • 15.4 First-Order Rayleigh-Schrodinger Theory 653
  • 15.5 The Second-Order Nondegenerate Theory 658
  • 15.6 The Case of Degenerate Eigenvalues 665
Chapter 16 Tensors
  • 16.1 Introduction 671
  • 16.2 Two-Dimensional Stresses 672
  • 16.3 Cartesian Tensors 676
  • 16.4 Algebra of Cartesian Tensors 681
  • 16.5 Kronecker and Levi-Civita Tensors. Pseudotensors 684
  • 16.6 Derivatives of Tensors. Strain Tensor and Hooke's Law .... 687
  • 16.7 Tensors in Skew Cartesian Frames. Covariant and
  • Contravariant Representations 696
  • 16.8 General Tensors 700
  • 16.9 Algebra of General Tensors. Relative Tensors 705
  • 16.10 The Covariant Derivative 711
  • 16.11 Calculus of General Tensors 715
Index 727